Chứng minh 5 mũ 2n cộng 2 (n thuộc N*) cho kết quả có chữ số tận cùng là 7
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DL
25 tháng 6 2018
a) Để một số chia hết cho 100 thì số đó phải có 2 chữ số tận cùng là 0
\(5^4=5^2\cdot5^2=25\cdot25\)có tận cùng là 25
Nên \(5^4+375\)có tận cùng là 2 chữ số 0
\(\Rightarrow5^4+375⋮100\)
b) \(2001^n+2^{3n}\cdot47^n+25^{2n}\)
Xét : \(2001^n\)có tận cùng là 1 nên lũy thừa với số mũ bao nhiêu đều có tận cùng là 1
\(2^{3n}\cdot47^n=\left(2^3\right)^n\cdot47^n=8^n\cdot47^n=376^n\)
\(25^{2n}=\left(25^2\right)^n=625^n\)
\(376^n\)và \(625^n\)có chữ số tận cùng là 6 và 5 nên lũy thừa với số mũ bao nhiêu cũng sẽ có tận cùng là 6 hoặc 5
\(\Rightarrow2001^n+376^n+625^n\)có tận cùng là 2
Đặt A=\(5^{2n}+2\)
A=\(\left(5^2\right)^n\)+2
A=\(25^n+2\)
Vì \(5^n\) luôn có chữ số tận cùng là 5(n\(\in N\)*)
\(\Rightarrow\)\(25^n\) có chữ số tận cùng là 5
\(\Rightarrow\)A=\(25^n+2\) có chữ số tận cùng là 7
Ta có: 52n + 2 = (52)n + 2 = 25n + 2
Vì 5n luôn có chữ số tận cùng là 5
=> 25n luôn có chữ số tận cùng là 5
=> 25n + 2 luôn có chữ số tận cùng là 7
=> đpcm