Tính diện tích của tam giác ABC , góc A = 90 dộ , AB = 6cm , BC = 10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\) \(AC^2=BC^2-AB^2\)
\(\Leftrightarrow\) \(AC^2=10^2-6^2=64\)
\(\Leftrightarrow\) \(AC=\sqrt{64}=8\)cm
b) Xét \(\Delta ABC\) và \(\Delta BDA\)có:
\(\widehat{BAC}=\widehat{DBA}=90^0\)
\(\widehat{ACB}=\widehat{BAD}\) (cùng phụ với góc DAC)
suy ra: \(\Delta ABC~\Delta BDA\)
c) \(\Delta ABC~\Delta BDA\)
\(\Rightarrow\)\(\frac{S_{ABC}}{S_{BDA}}=\left(\frac{AC}{AB}\right)^2=\left(\frac{8}{6}\right)^2=\left(\frac{4}{3}\right)^2=\frac{16}{9}\)
a) Diện tích tam giác ABC (Heron)
\(S_{ABC}=\frac{1}{4}\sqrt{\left(AB+BC+AC\right)\left(AB+BC-AC\right)\left(BC+AC-AB\right)\left(AC+AB-BC\right)}\)
\(S_{ABC}=\frac{1}{4}\sqrt{\left(6+10+8\right)\left(6+10-8\right)\left(10+8-6\right)\left(8+6-10\right)}=24\left(cm^2\right)\)
b)Xét tam giác ABC có
\(BC^2=10^2=100\left(cm\right)\)
\(AB^2+AC^2=6^2+8^2=100\left(cm\right)\)
Vì 100cm=100cm
\(\Rightarrow BC^2=AB^2+AC^2\)
=> Tam giác ABC vuông tại A
Xét diện tích tam giác ABC thường \(S_{ABCt}=\frac{AH.BC}{2}\left(1\right)\)
Xét diện tích tam giác ABC vuông \(S_{ABCv}=\frac{AC.AB}{2}\left(2\right)\)
Từ (1) và (2)
\(\Leftrightarrow AH.BC=AB.AC\)
\(\Leftrightarrow AH.10=8.6\Leftrightarrow AH=4,8\left(cm\right)\)
Xét tam giác ABH vuông tại H
\(\Rightarrow BH^2=AB^2-AH^2\left(PYTAGO\right)\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}\)
\(\Rightarrow BH=\sqrt{6^2-13,3^2}=3,6\left(cm\right)\)
Xét tam giác ACH vuông tại H
\(\Rightarrow HC^2=AC^2-AH^2\left(PYTAGO\right)\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{8^2-4,8^2}=6,4\left(cm\right)\)
Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=\sqrt{64}=8cm\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=\dfrac{24}{5}=4,8cm\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=8cm\)
b, Xét tam giác ABH và tam giác CBA có :
^B _ chung
^BAH = ^BCA ( cùng phụ ^HAC )
Vậy tam giác ABH ~ tam giác CBA ( g.g )
=> AH/AC = AB/BC => AH = 6.8:10 = 4,8 cm
1: Xét ΔABC có BD là đường phân giác
nên AD/CD=AB/BC=3/5
2: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
\(\widehat{C}\) chung
do đó: ΔCHD∼ΔCAB
Suy ra: HD/AB=CD/CB
hay \(CD\cdot AB=HD\cdot CB\)
a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)
Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:
\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)
\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)
\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)
Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).
b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).
Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)
Diện tích tam giác \(ADB\) là:
\({S_{ADB}} = \frac{1}{2}BD.AE\)
Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)
Diện tích tam giác \(ADC\) là:
\({S_{ADC}} = \frac{1}{2}DC.AE\)
Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).
Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).
1: Xét tứ giác ADME co
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
Xét ΔABC có
DM//AC
nên DM/AC=BD/BA=BM/BC
=>D là trung điểm của BA
Xét ΔABC có ME//AB
nên ME/AB=CM/CB=CE/CA=1/2
=>E là trung điểm của AC
=>EM//BD và EM=BD
=>BMED là hình bình hành
Xét tứ giác DMCE có
DM//CE
DM=CE
Do đó: DMCE là hình bình hành
2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
AD=AB/2=3cm
AE=AC/2=4cm
\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)
3: ΔHAC vuông tại H
mà HE là trung tuyến
nên HE=AC/2=MD
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét tứ giác DHME có
DE//MH
MD=HE
Do đo: DHME là hình thang cân
Áp dụng định lý Py - ta -go vào tam giác vuông ABC , ta có :
AC^2 = BC^2 - AB^2 = 10^2 - 6^2 = 64
-> AC = 8 (cm)
Diện tích tam giác ABC bằng :
1/2.AB.AC = 1/2.6.8 = 24 (cm^2)
Vậy diện tích tam giác ABC bằng 24 cm^2
bạn hoc o truong nao zay