K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{2x^2-10x+11}=\sqrt{x^2-6x+8}\)

\(\Leftrightarrow2x^2-10x+11=x^2-6x+8\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

#H

NV
29 tháng 10 2020

Đặt \(\left\{{}\begin{matrix}2x+3=a\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

Pt trở thành:

\(a^2+2b^2-3ab=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=2x+3\\2\sqrt{x^2-x+1}=2x+3\end{matrix}\right.\)

\(\Leftrightarrow...\)

1 tháng 2 2016

3x2+6x+7=3.(x2+2x+1)+4=3.(x+1)2+4 >= 4 

=> căn của nó >=

..................................................... ko thích giải

1 tháng 2 2016

dùng BĐT nha bạn

1 tháng 9 2015

Câu 1.  Ta có phương trình tương đương với  \(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\leftrightarrow\left|3-x\right|+\left|x+5\right|=8\). Nhớ lại rằng ta luôn có \(\left|A\right|+\left|B\right|\ge\left|A+B\right|,\) với dấu bằng xảy ra khi và chỉ khi \(A\cdot B\ge0\),

Mà \(8=\left(3-x\right)+\left(x+5\right)\to\left(3-x\right)\left(x+5\right)\ge0\leftrightarrow\left(x-3\right)\left(x+5\right)\le0\leftrightarrow-5\le x\le3.\)

Vậy đáp số là \(-5\le x\le3.\)

Câu 2.  Ta có

\(VT=y^2-2y+3=\left(y-1\right)^2+2\ge2,VP=\frac{6}{x^2+2x+4}=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\to VP\le VT\)

Do đó để \(VT=VP\) thì các dấu bằng phải xảy ra, ta suy ra ngay \(y=1,x=-1.\)  (Ở đây ta kí hiệu VT là vế trái, VP là vế phải). ĐPCM

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

26 tháng 7 2017

a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)

Dấu = xảy ra khi \(x=-1\)

b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có

\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)

Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có

\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)

Thôi làm tiếp đi làm biếng quá.

26 tháng 7 2017

a)3x2+6x+7+5x2+10x+14=42xx2

\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)

\(\Leftrightarrow-x^2-2x+4\)

  Thế vào ta được:

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)

\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}