10cm 5cm 5cm 16cm
Cho hình thang ABCD và số đo các cạnh.Tính SABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH ⊥ DC tại H ; BK ⊥ DC tại K.
=> AH // BK
Xét t/g AHD vuông tại H và t/g BKC vuông tại K có:
AD = BC (do ABCD là htc)
\(\widehat{D}=\widehat{C}\)(do ABCD là htc)
=> t/g AHD = t/g BKC (ch-gn)
=> HD = KC ; AH = KB
Mà AH // BK
=> AHKB là hình thang
Lại có \(\widehat{AHK}=90^o\)
=> AHKB là hình chữ nhật
=> HK = AB = 10cm
Có
DH+HK+KC = DC
=> 2CK + 10 = 16 (cm)
=> CK = 3 (cm) Áp dụng đ/l Pythagoras vào t/g BKC vuông tại K có
\(BK^2+CK^2=BC^2\)
=> \(BK^2+3^2=5^2\)
=> BK = 4 (cm)
Có
\(S_{ABCD}=\dfrac{1}{2}.BK.\left(AB+CD\right)\)
\(=\dfrac{1}{2}.4.\left(10+16\right)=2.26=52\)cm2
Không chắc lắm :((
Vẽ AE // BD, AH vg góc DC
=> ABDE là hbh(dhnb)
=> ED=AB=5cm, AE=BD=12cm
EC=ED+DC=5=15=20cm
Xét tg AEC có :
AE2+AC2=122+162= 400
EC2=202=400
=>AE2+AC2=EC2
=> tg AEC vg tại A
=> AH.EC=AE.AC
=>AH = 48/5 cm
S ht ABCD= ((5+12).48/5 ):2 = 96 cm2
a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)
b) Xem hình vẽ
A B C D E 6 4 5 F
Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)
Vì ABCD là hình thang cân nên AE = FB = 3.
Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.
\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)
các bạn giúp mình với, nhớ làm bài giải nhé.
giúp mình đi, mình k cho
A B C D H K
Kẻ 2 đường cao AH và BK
=> AHKB là hcn => AB = HK = 10cm
=> DH = KC = (16 - 10) : 2 = 3cm
Áp dụng Pytago trong tam giác vuông ADH ta đc:
AD2 = AH2 + DH2
=> AH = \(\sqrt{5^2-3^2}=4\)cm
Vậy SABCD = \(\frac{\left(10+16\right).4}{2}=52\) (cm2)