Tìm a ,b ,c biết
a = b + c = b - c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:
TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)
TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)
Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)
b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.
Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH
TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)
TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)
\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\).
Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)