Cho Δ ABC vuông tại A, M là trung điểm của BC
CMR: \(AM=\frac{1}{2}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này bạn áp dụng định lí của lớp 9 là ra
mà nếu không áp dụng cái đó thì chỉ có cách kẻ thêm hình mới làm được thôi
Hình tự vẽ nhé !
Giải
a) Xét tam giác AMB và tam giác AMC có
AB = AC ( gt )
MB = MC ( vì M là trung điểm của BC )
AM cạnh chung
Do đó tam giác AMB = tam giác AMC
b) Vì hai tam giác AMB = AMC nên góc BAM = góc CAM
Vì góc BAM = góc CAM nên AM là tia phân giác của góc BAC
c)Vì hai tam giác AMB = AMC nên góc AMB = góc AMC
mà góc AMB + góc AMC = 1800 nên góc AMB = 900
Vì góc AMB =900 nên AM vuông góc với BC
a: Xet ΔAHN và ΔCHM có
AH=CH
góc HAN=góc HCM
AN=CM
=>ΔAHN=ΔCHM
b: Xet ΔAHM và ΔBHN co
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM};\widehat{AMB}=\widehat{AMC}\)
\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
\(\widehat{BAM}=\widehat{CAM}\)
AM nằm giữa AB,AC
Do đó: AM là phân giác của \(\widehat{BAC}\)
b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có
MB=MC
\(\widehat{MBA}=\widehat{MCD}\)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>BD//AC
BD//AC
AC\(\perp\)BH
Do đó: BD\(\perp\)BH
=>\(\widehat{HBD}=90^0\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2