K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Ta có: \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Dấu "=" chỉ xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy giá trị trên < 0 với mọi số thực x

3 tháng 8 2017

\(x-x^2-1\\ =-\left(x^2-x+1\right)\\ =-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\\ \left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\in R\\ \Rightarrow-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]< 0\forall x\in R\\ \Leftrightarrow x-x^2-1< 0\forall x\in R\)

Vậy \(x-x^2-1< 0\forall x\in R\)

3 tháng 8 2017

Ta có: \(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

\(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\in R\)

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\forall x\in R\)

-> ĐPCM.

18 tháng 10 2017

ta có : \(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right)\)

\(=-\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi \(x\)

\(\Leftrightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\) với mọi \(x\)

vậy \(x-x^2-1< 0\) với mọi số thực \(x\) (đpcm)

18 tháng 10 2017

Dễ mak

Ta có:

x luôn bé hơn hoặc bằng x2

=>x-x2\(\le0\)

\(\Rightarrow x-x^{2^{ }}-1\le0\forall x\in Q\)

17 tháng 7 2017

b) Câu hỏi của Nguyễn Hoàng Thanh Trúc - Toán lớp 8 - Học toán với OnlineMath tham khảo

11 tháng 12 2019

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)

27 tháng 10 2018

a ) Đề sai

b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)

29 tháng 10 2018

a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)

\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)

\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)

nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)

b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)

nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)

11 tháng 8 2017

Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1

Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)

Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)

Ta có : x - x2 - 1

= -(x2 - x + 1)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)

Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Vậy x - x2 - 1 \(< 0\forall x\in R\)

11 tháng 8 2017

hỏi tí cái chữ A ngược đó là gì vậy bạn

11 tháng 11 2017

Ta có :

\(2x-2x^2-3\)

\(=-2\left(x^2-x+\dfrac{3}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{5}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]\)

Tới đây ta nhận xét :

\(\left(x-\dfrac{1}{2}\right)^2\ge0\left(\forall x\right)\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\left(\forall x\right)\)

Do \(-2\) < 0 nên :

\(-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]< 0\)

12 tháng 11 2017

CMR:\(2x-2x^2-1\)<0 Với mọi số thực x.

GIẢI :

\(2x-2x^2-1\)

\(=-2\left(x^2-x+1\right)\)

\(=-2\left(x-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\)

Nhận xét : \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\) với mọi x

Vậy \(2x-2x^2-1< 0\) với mọi x