Tìm \(n\in N\) để
c) ( 104n+214) \(⋮3\)
GIÚP mk z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: n+3 là bội của n^2 - 7
=> n+3 chia hết cho n^2 - 7
=> (n+3).( n-3) chia hết cho n^2 -7
=> n.(n-3) + 3.(n-3) = n^2 - 3n + 3n - 9 = n^2 -9 chia hết cho n^2 - 7
=> n^2 - 7- 2 chia hết cho n^2 -7
mà n^2 - 7 chia hết cho n^2 -7
=> 2 chia hết cho n^2 -7
\(\Rightarrow n^2-7\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)
nếu n^2 - 7 = 2 => n^2 = 9 => n = 3 hoặc n = - 3 ( TM)
n^2 - 7 = - 2 => n^2 = 5 => \(n=\sqrt{5}\) hoặc \(n=-\sqrt{5}\)( Loại)
n^2 - 7 = 1 => n^2 = 8 => \(n=\sqrt{8}\)hoặc \(n=-\sqrt{8}\) ( Loại)
n^2 - 7 = - 1 => n^2 = 6 => \(n=\sqrt{6}\) hoặc \(n=-\sqrt{6}\) ( Loại)
KL: n =3 hoặc n = -3
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
Để A là số nguyên thì 3 phải chia hết cho n + 5
=> n + 5 sẽ thuộc Ư(3)
Mà 3 = 1.3 = -1.(-3)
Ta có bảng:
n + 5 | 1 | 3 | -1 | -3 |
n | -4 | -2 | -6 | -8 |
Vậy n = -4 hoặc -2 hoặc -6 hoặc -8.
Tik nhá
uses crt;
var n,i,d,x,j,tam:longint;
a:array[1..255]of longint;
st:string;
begin
clrscr;
write('Nhap n='); readln(n);
str(n,st);
d:=length(st);
for i:=1 to d do
val(st[i],a[i],x);
for i:=1 to d-1 do
for j:=i+1 to d do
if a[i]<a[j] then
begin
tam:=a[i];
a[i]:=a[j];
a[j]:=tam;
end;
for i:=1 to d do
write(a[i]);
readln;
end.
A=\(\frac{3n+4}{n+2}\)=\(\frac{3n+6-2}{n+2}\)=\(\frac{3.\left(n+2\right)-2}{n+2}\) =3-\(\frac{2}{n+2}\)
Để A có giá trị bé nhất=>\(\frac{2}{n+2}\) có giá trị lớn nhất
=>n+2 là số nguyên dương bé nhất
=>n+2=1=>n=-1 <=>A=1
Ta có \(8n-3=11n-3n-3=11n-3\left(n+1\right)\)
Để \(8n-3⋮11\) thì \(3\left(n+1\right)⋮11\)
MÀ 3 không chia hết 11 \(\Rightarrow n+1⋮11\)
\(\Rightarrow n=10;21;32;...\)
a) 3 chia hết cho (n-2)
=> n-2 € Ư(3)
Mà Ư(3)={1;-1;-3;3}
=> n-2 € { 1;-1;-3;3}
=> n € { 3;1;-1;5}
Vậy n€ {3;1;-1;5} để 3 chia hết cho n-2
b) 3n+1 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1€ Ư(3)
Mà Ư(3) ={1;-1;3;-3}
=> n+1€{1;-1;3;-3}
=> n€{0;-2;2;-4}
Vậy n€{0;-2;2;-3} để 3n+1 chia hết cho n+1
\(104n+214⋮3\)
\(\Rightarrow102n+2n+213+1⋮3\)
Do \(102n+213⋮3\Rightarrow2n+1⋮3\)
\(\Rightarrow2n+1-3⋮3\)
\(\Rightarrow2n-2⋮3\)
\(\Rightarrow2.\left(n-1\right)⋮3\)
Mà (2;3)=1 \(\Rightarrow n-1⋮3\)
\(\Rightarrow n=3.k+1\left(k\in N\right)\)
Vậy n = 3.k + 1 (k ϵ N) thỏa mãn đề bài
Ta có: \(104n+214=102n+213+2n+1=3\left(34n+71\right)+\left(2n+1\right)\)
Để \(\left(104n+214\right)⋮3\) thì \(\left(2n+1\right)\) phải chia hết cho 3
\(\Rightarrow2n+1=3k\)
\(\Rightarrow2n=3k-1\)
\(\Rightarrow n=\frac{3k-1}{2}\) (k là số tự nhiên lẻ)
Vậy ...