K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Tam giác ABC có:

BAC + ABC + ACB = 1800

800 + ABC + ACB = 1800

ABC + ACB = 1800 - 800

ABC + ACB = 1000

IB là tia phân giác của ABC

=> ABI = IBC = ABC/2

IC là tia phân giác của ACB

=> ACI = ICB = ACB/2

Tam giác BIC có:

IBC + ICB + BIC = 1800

ABC/2 + ABC/2 + BIC = 1800

\(\frac{ABC+ACB}{2}\) + BIC = 1800

1000 : 2 + BIC = 1800

500 + BIC = 1800

BIC = 1800 - 500

BIC = 1300

8 tháng 6 2016

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

24 tháng 11 2018

+)Xét tam giác ABC có góc A +ABC+ACB=180 độ(định lí tổng 3 góc trong một tam giác )

mà A=80 độ (gt)

suy ra ABC+ACB=180-80=100(1)

+)Có BI là phân giác ABC(gt)

suy ra góc CBI=IBA=ABC/2(tính chất ..)

+)CMTT có BIC=ICA=ACB/2

SUY RA góc IBC+ICB=ABC+ACB/2

MÀ có (1)suy ra IBC+ICB=50(2)

+)Xét tam giác BIC có(2)nên suy ra BIC=180-50=130

NẾU MUỐN MK LÀM NỐT THÌ KẾT BẠN VỚI MÌNH NHÉ!!!!Thank you for watching!!

1 tháng 12 2018

1, Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(tổng 3 góc tam giác)

       \(\Leftrightarrow\widehat{C}+90^o+\widehat{C}=180^o\)

       \(\Leftrightarrow2\widehat{C}=90^o\)

      \(\Leftrightarrow\widehat{C}=45^o\)

 \(\Rightarrow\widehat{A}=\widehat{C}+10=55^o\)

\(\Rightarrow\widehat{B}=180^o-\widehat{A}-\widehat{C}=180^o-55^o-45^o=80^o\)

1 tháng 12 2018

2,
A B C M 1 1

Vì tam giác ABC vuông tại A

=> ^B + ^C = 90o

Vì BM là phân giác ^ABC 

=>^B1 = \(\frac{\widehat{ABC}}{2}\)

Tương tự ^C1 = \(\frac{\widehat{ACB}}{2}\)

\(\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)

Theo tổng 3 góc trong tam giác \(\widehat{BMC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-45^o=135^o\)

13 tháng 9 2015

+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)

góc A2 = xAC / 2 

=> góc A= (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )

+) Trong tam giác AIB: góc AIB = 180o - (B1 + A + A2)

                                              = 180o - (B1 + A +B1 + ( C1 / 2 ) )

                                              = 180o - (2.B1 + A + ( C1 / 2 ) )

                                              = 180o - (B + A1 + ( C1 / 2 ))

Mà B + A1 = 180o - C1 =  180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o

=> góc CIB = 180o - (110o + 35o) = 180o - 145o = 35o

 

a) Vì BI là tia phân giác của \(\widehat{ABC}\)

nên \(\widehat{IBC}=\dfrac{\widehat{ABC}}{2}\)

Vì CI là tia phân giác của \(\widehat{ACB}\)

nên \(\widehat{ICB}=\dfrac{\widehat{ACB}}{2}\)

Xét ΔABC có 

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{A}\)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=180^0-80^0=100^0\)

Ta có: \(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=\dfrac{100^0}{2}\)

hay \(\widehat{IBC}+\widehat{ICB}=50^0\)

Xét ΔBIC có

\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{BIC}+50^0=180^0\)

\(\Leftrightarrow\widehat{BIC}=180^0-50^0\)

hay \(\widehat{BIC}=130^0\)

Vậy: \(\widehat{BIC}=130^0\)

 

19 tháng 10 2017

Ta có \(\widehat{A}=50^o\)

Suy Ra \(\widehat{B}+\widehat{C}=180-50=130^o\)

Mà phân giác trg B,C cắt nhau tại I

Suy ra\(\widehat{IBC}+\widehat{ICB}=\left(\widehat{B}+\widehat{C}\right):2=130:2=65^o\)

Xét \(\Delta IBC\)có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^o\)(tổng 3 góc trong 1 tam giác)

Mà \(\widehat{IBC}+\widehat{ICB}=65^o\)

Suy Ra \(\widehat{BIC}=180-65=115^o\)

Vậy \(\widehat{BIC}=115^o\)