K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có:

\(6 = \sqrt {36} ; - 1,7 =  - \sqrt {2,89} \)

Vì 0 < 2,89 < 3 nên 0> \( - \sqrt {2,89}  >  - \sqrt 3 \) hay 0 > -1,7 > \( - \sqrt 3 \)

Vì 0 < 35 < 36 < 47  nên \(0 < \sqrt {35}  < \sqrt {36}  < \sqrt {47} \) hay 0 < \(\sqrt {35}  < 6 < \sqrt {47} \)

Vậy các số theo thứ tự tăng dần là: \( - \sqrt 3 ; - 1,7;0;\sqrt {35} ;6;\sqrt {47} \)

b) Ta có:

\(\sqrt {5\frac{1}{6}}  = \sqrt {5,1(6)} ; - \sqrt {2\frac{1}{3}}  =  - \sqrt {2,(3)} \); -1,5 = \( - \sqrt {2,25} \)

Vì 0 < 2,25 < 2,3 < 2,(3) nên 0> \( - \sqrt {2,25}  >  - \sqrt {2,3}  >  - \sqrt {2,(3)} \) hay 0 > -1,5 > \( - \sqrt {2,3}  >  - \sqrt {2\frac{1}{3}} \)

Vì 5,3 > 5,1(6) > 0 nên \(\sqrt {5,3}  > \sqrt {5,1(6)} \)> 0 hay \(\sqrt {5,3}  > \sqrt {5\frac{1}{6}}  > 0\)

Vậy các số theo thứ tự giảm dần là: \(\sqrt {5,3} ;\sqrt {5\frac{1}{6}} ;0\); -1,5; \( - \sqrt {2,3} ; - \sqrt {2\frac{1}{3}} \)

a) Ta sắp xếp theo thứ tự tăng dần như sau:

\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)

b) Ta sắp xếp theo thứ tự tăng dần như sau:

\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)

17 tháng 1 2022

Hoàng Phong làm bừa

17 tháng 1 2022

a) 2√6>3√2>√13>2√326

b)1/3√39>1/4√32>1/5√35>1/2√51339

@@@

17 tháng 1 2022

Bạn Tạ Bảo Trân làm sai

28 tháng 5 2021

a) 2 \sqrt{6}, \sqrt{29}, 4 \sqrt{2}, 3 \sqrt{5} ;26,29,42,35;

b) \sqrt{38}, 2 \sqrt{14}, 3 \sqrt{7}, 6 \sqrt{2}38,214,37,62

19 tháng 6 2021

a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)

12 tháng 6 2023

\(\sqrt{9-3\sqrt{8}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}+\sqrt{5-2\sqrt{6}}-\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{3}+\left(\sqrt{3}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}\)

\(=\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}-\sqrt{6}+\sqrt{2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{6}-\sqrt{3}\right|-\sqrt{6}+\sqrt{2}+\left|\sqrt{3}-\sqrt{2}\right|\)

\(=\sqrt{6}-\sqrt{3}-\sqrt{6}+\sqrt{2}+\sqrt{3}-\sqrt{2}\) (do \(\sqrt{6}-\sqrt{3}>0;\sqrt{3}-\sqrt{2}>0\))

\(=0\)

\(=\sqrt{9-6\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{3}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}\)

\(=0\)

24 tháng 4 2017

a. \(3\sqrt{5}=\sqrt{45}\) ; \(2\sqrt{6}=\sqrt{24}\) ; \(4\sqrt{2}=\sqrt{32}\)

Vì 24 < 29 < 32 < 45 nên \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)

Hay \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b. \(6\sqrt{2}=\sqrt{72}\) ; \(3\sqrt{7}=\sqrt{63}\) ; \(2\sqrt{14}=\sqrt{56}\)

Vì 38 < 56 < 63 < 72 nên \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)

Hay \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)

20 tháng 9 2021

A trước b sau

14 tháng 5 2016

Ta có :

\(\sqrt{2}=2^{\frac{1}{2}}\)

\(\left(2^3\right)^{\log_{64}\frac{5}{4}}=2^{3\log_{2^6}\frac{5}{4}}=2^{\frac{1}{2}\log_2\frac{5}{4}}=2^{\log_2\sqrt{\frac{5}{4}}}=\sqrt{\frac{5}{4}}=\left(\frac{5}{4}\right)^{\frac{1}{2}}\)

\(2^{3^{\log_92}}=2^{3^{\frac{1}{2}\log_32}}=2^{3^{\log_3\sqrt{2}}}=2^{\sqrt{2}}\)

Mà : \(\sqrt{2}>\frac{\pi}{6}>\frac{1}{2}\Rightarrow2^{\sqrt{2}}>2^{\frac{\pi}{6}}>2^{\frac{1}{2}}\)

                            \(\Leftrightarrow2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}\)  (1)

Mặt khác : \(2>\frac{5}{4}\Rightarrow2^{\frac{1}{2}}>\left(\frac{5}{4}\right)^{\frac{1}{2}}\) hay \(\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\)  (2)

Từ (1) và (2) : \(2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\)

Vậy thứ tự giảm dần là :

\(2^{3^{\log_92}};2^{\frac{\pi}{6}};\sqrt{2};\left(2^3\right)^{\log_{64}\frac{5}{4}}\)