cho a, b >0 và a^2 +b^2 =8
tìm GTLN của bt : \(M=\sqrt[3]{a^3+1}+\sqrt[3]{b^3+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Áp dụng bđt bu nhi a, ta có
\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)
Áp dụng bđt cô si, ta có
\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)
mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)
phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1
thì bạn sẽ chứng minh được cái kia=1
=>\(P\le\sqrt{\frac{3}{2}}\)
dâu = xảy ra <=>a=b=c=1
Dễ thấy theo AM - GM :
\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)
\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)
Tương tự:
\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)
Cộng lại ta sẽ có đpcm
Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1
1) Áp dụng BĐT bunhia, ta có
\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)
Dấu = xảy ra <=> a=b=c=1/3
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
vì 0<a<1 ;0<b<2 ;0<c<3
=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1
=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)
c/m tương tự với b,c
=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)
và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)
Cộng các vế của bđt với nhau
=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6
Vậy GTLN của A là 6
theo cauchy schwars ta có
\(\left\{{}\begin{matrix}2\sqrt{a+b}.1\le a+b+1\\2\sqrt{c+b}.1\le c+b+1\\2\sqrt{a+c}.1\le a+c+1\end{matrix}\right.\)
cộng vế theo vế ta đc \(2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le2\left(a+b+c\right)+3=5\)
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\dfrac{5}{2}\)
vậy \(P_{MAX}=\dfrac{5}{2}\)
Lời giải:
Ta có:
\(A=\sqrt[3]{a+b+1}+\sqrt[3]{b+c+1}+\sqrt[3]{a+c+1}\)
\(\Rightarrow A\sqrt[3]{9}=\sqrt[3]{9(a+b+1)}+\sqrt[3]{9(b+c+1)}+\sqrt[3]{9(a+c+1)}\)
Áp dụng BĐT Cauchy ta có:
\(\sqrt[3]{9(a+b+1)}\leq \frac{3+3+(a+b+1)}{3}\)
\(\sqrt[3]{9(b+c+1)}\leq \frac{3+3+(b+c+1)}{3}\)
\(\sqrt[3]{9(c+a+1)}\leq \frac{3+3+(c+a+1)}{3}\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\sqrt[3]{9}A\leq \frac{7+a+b}{3}+\frac{7+b+c}{3}+\frac{7+a+c}{3}\)
\(\Leftrightarrow \sqrt[3]{9}A\leq \frac{21+2(a+b+c)}{3}=\frac{21+2.3}{3}=9\)
\(\Rightarrow A\leq \frac{9}{\sqrt[3]{9}}=3\sqrt[3]{3}\)
Vậy GTLN của $A$ là \(3\sqrt[3]{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
\(\left\{{}\begin{matrix}x=\sqrt[3]{a+b+1}\\y=\sqrt[3]{b+c+1}\\z=\sqrt[3]{a+c+1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=A\\x^3+y^3+z^3=9\end{matrix}\right.\)
\(A^3=9+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
BDT ; \(3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{8}{9}\left(x+y+z\right)^3=\dfrac{8}{9}A^3\)\(\Leftrightarrow A^3\le9+\dfrac{8}{9}A^3\Leftrightarrow A^3\le81;A\le\sqrt[3]{81}=3.\sqrt{3}\)
dang thuc ; x=y=z <=> a=b=c=1
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Lời giải:
Ta có \(M\sqrt[3]{3}=\sqrt[3]{3(a+1)(a^2-a+1)}+\sqrt[3]{3(b+1)(b^2-b+1)}\)
Áp dụng bất đẳng thức AM-GM cho ba bộ số không âm:
\(\sqrt[3]{3(a+1)(a^2-a+1)}\leq \frac{3+a+1+a^2-a+1}{3}=\frac{a^2+5}{3}\)
Tương tự \(\sqrt[3]{3(b+1)(b^2-b+1)}\leq \frac{b^2+5}{3}\)
Do đó \(M\sqrt[3]{3}\leq \frac{a^2+b^2+10}{3}=6\Rightarrow M_{\max}=\frac{6}{\sqrt[3]{3}}\)
Vậy \(M_{\max}=\frac{6}{\sqrt[3]{3}}\Leftrightarrow a=b=2\)