Phân tích thành nhân tử ( x2 + 8x - 34)2 - ( 3x2 - 8x + 2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=3\left(x^2-10x+25\right)=3\left(x-5\right)^2\)
b) \(=x\left(x+y\right)+8\left(x+y\right)=\left(x+y\right)\left(x+8\right)\)
c) \(=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Ta có:\(\left(x^2+8x-34\right)^2-\left(3x^2-8x+2\right)^2\)
\(=\left(x^2+8x-34+3x^2-8x+2\right)\left[x^2+8x-34-\left(3x^2-8x+2\right)\right]\)
\(=\left(4x^2-32\right)\left(x^2+8x-34-3x^2+8x-2\right)\)
\(=\left(4x^2-32\right)\left(-2x^2+16x-36\right)\)
\(=-2\left(4x^2-32\right)\left(x^2-8x+18\right)\)
cảm ơn.nhưng sao bạn không rút 4 trong \(4x^2-32\)
=> \(\left(4\left(x^2-8\right)\right)\cdot\left(-2\left(x^2-8x+18\right)\right)\)
=\(-8\left(x^2-8\right)\left(x^2-8x+18\right)\)
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Câu 6:Thực hiện phép nhân -2x(x2 + 3x - 4) ta được:
A.-2x3 - 6x2 – 8x B. 2x3 -6x2 – 8x C. -2x3 - 6x2 + 8x D. -2x3 + 3x2 -4
Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:
A. (x+y+3z)(x+y–3z)
B. (x-y+3z)(x+y–3z)
C.(x - y +3z)(x - y – 3z)
D. (x + y +3z)(x -y – 3z)
Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:
A. (x - 3)( x + 4 ) B. (x + 3)( x + 4 ) C.(x + 5)( x + 2 ) D. (x -5)( x + 2 )
Câu 10: Giá trị của biểu thức (x2 + 4x + 4) tại x = - 2 là:
A. 4 B. -2 C. 0 D. -8
Mấy câu còn lại bị lỗi r nhé
\(a,=3\left(x^2-2\right)\\ b,=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\\ c,=9x^2\left(x-y\right)-4\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\\ d,=x\left(x^2-2x-8\right)=x\left(x^2+2x-4x-8\right)=x\left(x+2\right)\left(x-4\right)\)
\(a,x^2-4xa+4a^2-81y^2=\left(x-2a\right)^2-\left(9y\right)^2=\left(x-2a-9y\right)\left(x-2a+9y\right)\\ b,3x^2-8x+4=\left(3x^2-6x\right)-\left(2x-4\right)=3x\left(x-2\right)-2\left(x-2\right)=\left(x-2\right)\left(3x-2\right)\)
Mấy bài này khá đơn giản .
Bạn chỉ cần áp dụng hằng đẳng thức \(x^2-y^2=\left(x+y\right)\left(x-y\right)\) là được nhs =))
a)
\(\left(xy+4\right)^2-4\left(x+y\right)^2\)
\(=\left(xy+4\right)^2-\left[2\left(x+y\right)\right]^2\)
\(=\left[xy+4-2\left(x+y\right)\right]\left[xy+4+2\left(x+y\right)\right]\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[y\left(x-2\right)-2\left(x-2\right)\right]\left[y\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(y-2\right)\left(x+2\right)\left(y+2\right)\)
b)
\(\left(ab-xy\right)^2-\left(bx-ay\right)^2\)
\(=\left(ab-xy-bx+ay\right)\left(ab-xy+bx-ay\right)\)
\(=\left[a\left(b+y\right)-x\left(b+y\right)\right]\left[a\left(b-y\right)+x\left(b-y\right)\right]\)
\(=\left(b+y\right)\left(a-x\right)\left(a+x\right)\left(b-y\right)\)
c)
\(=\left(x^2+8x-34+3x^2-8x-2\right)\left(x^2+8x-34-3x^2+8x+2\right)\)
\(=\left(4x^2-36\right)\left(-2x^2+16x-32\right)\)
\(=\left(2x-6\right)\left(2x+6\right)\left(-2\right)\left(x^2-8x+16\right)\)
\(=\left(2x-6\right)\left(2x+6\right)\left(-2\right)\left(x-4\right)^2\)
Bạn liểm tra lại nhs
Mk lm hay nhấm lắm
=))
ảnh giỏi lắm đừng coi thường à. olm tới 11000 điểm mà chỉ 1 tuần dc 1000 đỉm á
1)\(4x^2-4xy+y^2-8x+4y=\left(4x^2-4xy+y^2\right)-\left(8x-4y\right)=\left(2x-y\right)^2-4\left(2x-y\right)=\left(2x-y\right)\left(2x-y-4\right)\)
2) \(2x^3-3x^2+3x-1=x^2\left(2x-1\right)-x\left(2x-1\right)+\left(2x-1\right)=\left(2x-1\right)\left(x^2-x+1\right)\)
( x2 + 8x - 34)2 - ( 3x2 - 8x + 2)2
=> x4 + 8x2 - 342 - 3x4 + 8x2 - 22
=> x4( 1 - 4 ) + ( 8x2 - 8x2 ) + ( 342 - 22 )
-3x4 + 0 + 1152
= -3x4 + 1152
Lk t nhá, Michiel na`h, h pải dùng nik ko có tn