\(A=-81-25.\left|2-x\right|+40\)
giup mk voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Nếu \(x\le2\) thì A=-81-25(2-x)+40=-81-50+25x+40=25x-91
-Nếu \(x\ge2\) thì A=-81-25(x-2)+40=-81-25x+50+40=9-25x
\(A=x^2-3x+5=x^2-\frac{3}{2}x-\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=x\left(x-\frac{3}{2}\right)-\frac{3}{2}\left(x-\frac{3}{2}\right)+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)
Vậy minA=11/4 khi x=3/2
\(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\) (với mọi x)
Dấu "=" xảy ra \(< =>5x^2=0< =>x=0\)
Vậy minB=5 khi x=0
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy GTNN của A là \(\frac{11}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
b)\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Vì \(5x^2\ge o\)với mọi x
\(\Rightarrow5x^2+5\ge5\)
Vậy GTNN của B là 5 khi x=o
\(\left(\frac{1}{2}x-5\right)^{29}\)ko làm đc
Phải mũ chẵn mới ra
1)
\(=-18+9+16=7\)
2)
\(144+n^2=225\)
\(n^2=225-144\)
\(n^2=81=\left(-9\right)^2=9^2\)
\(n=9\)hoặc \(n=-9\)
3) Tính tổng:
(-25)+(-24)+(-23)+..+(-3)+(-2)+(-1).+0+1+2+3+...+23+24+25+...+40
=0+(1-1)+(2-2)+(3-3)+...+(25-25)+...+26+27+...+40
=26+27+28+...+40 ( Số số hạng: (40-26):1+1=15 ( số hạng))
= ( 40 + 26) x15:2=495
\(7^{2x}+7^{2x+2}=2450\)
\(7^{2x}+7^{2x}.7^2=2450\)
\(7^{2x}+7^{2x}.49=2450\)
\(7^{2x}\left(1+49\right)=2450\)
\(7^{2x}.50=2450\)
\(7^{2x}=2450:50\)
\(7^{2x}=49\)
\(7^{2x}=7^2\)
\(2x=2\)
=> \(x=1\)
Vậy \(x=1\)
\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)
\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)
\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)
\(\left(x-2\right)\left(x^2-5x+4\right)=\left(x-2\right)\left(x^2-4x-x+4\right)=\left(x-2\right)\left(x-4\right)\left(x-1\right)< 0\)
khi đó có số số lẻ số <0
\(+,1\text{ số bé hơn 0}\Rightarrow x-4< 0;x-2>0\Leftrightarrow2< x< 4\)
\(+,3\text{ số bé hơn 0}\Rightarrow x-4< 0\Leftrightarrow x< 4\)
vậy 2<x<4 hoặc x<4
TH1, x-2>0 ->x>2 (1) từ (1), (2) -> x>2 (*)
x^2-5x+4<0 ->x(x-5)< -4 (2)
TH2, x-2<0 -> x<2 (3) Từ (3), (4) -> 2<x<5 -> x thuộc { 3;4} (**)
x^2-5x+4 > 0 -> x(x-5) > -4 -> x> 5 (4)
Từ (*); (**) -> x>2
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
x | 7 | 9 | |||
x2 | 49 | 81 | |||
x2-49 | - | 0 | + | + | + |
x2-81 | - | - | - | 0 | + |
A | + | 0 | - | 0 | + |
dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9
b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)
=1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)
(2015 số 1)
=1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))
=\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)
=2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))
A=-41-25.|2-x|
nếu 2-x>=0<=>x<=2
thì |2-x|=2-x
=>A=-41-25.(2-x)=-41-50+25x=25x-91
nếu 2-x<0<=>x>2
thì |2-x|=x-2
=>A=-41-25.(x-2)
=-41-25x+50
=9-25x
vậy A=25x-91 khi x<=2
A=9-25x khi x>2