tinh a= (1/22-1)(1/32-1)(1/42-1)....(1/2002-1)
giup toi voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}+-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times0\)
\(=0\)
Ta có từ 1/101 đến 1/102 có 200 số.Vậy ta nhân 1/300 với 200 : 1/300 x 200 = 200/300 = 2/3
Vì 200 số 1/300 cộng lại không thể lớn hơn 1/300 số với 199 số khác lớn hơn 1/300 nên :
1/101 + 1/102 + ... +1/299 + 1/300 > 1/300 x 200 = 200/300 = 2/3 ( Điều phải chứng minh )
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\right)\)
\(2A=1-\frac{1}{3^n}\)
\(A=\frac{1-\frac{1}{3^n}}{2}\)
b) Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Ta có: ab.75 = x2 \(\left(x\ne0\right)\)
=> ab.3.52 = x2
Để ab.75 là 1 số chính phương thì ab = 3.k2 \(\left(k\ne0\right)\)
Lại có: 9 < ab < 100 => 9 < 3.k2 < 100
=> 3 < k2 < 34
Mà k2 là số chính phương nên \(k^2\in\left\{4;9;16;25\right\}\)
\(\Rightarrow ab\in\left\{12;27;48;75\right\}\)
Vậy số cần tim là 12; 27; 48; 75
c) Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)
\(3B=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6B=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6B-2B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4B=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{205}{3^{101}}< 3\)
\(\Rightarrow B< \frac{3}{4}\)
Mẹ Ba hơn em Ba số tuổi là: 32 - 6 = 26(tuổi)
Hiệu số tuổi của 2 người không thay đổi theo thời gian.
Khi tuổi em Ba bằng 1/3 tuổi mẹ Ba thì mẹ của Ba hơn em Ba là: 1 - 1/3 = 2/3
Tuổi em Ba khi đó là: 26 : 2 = 13(tuổi)
Vậy sau 7 năm nữa(13 - 6 = 7) thì tuổi em Ba bằng 1/3 tuổi mẹ Ba
2/5 x 1/x + 1/x x 2 + 2/5 = 1/2
1/x x ( 2/5 + 2 ) + 2/5 = 1/2
1/x x 6/5 + 2/5 = 1/2
1/x x 6/5 = 1/2 - 2/3
( 1 : x) x 6/5 = -1/6
1:x = -1/6 : 6/5
1: x = -5/36
⇔ x = -36/5.
Vậy x = -36/5.
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)=115\)
\(\Rightarrow1.\left(\frac{1.2}{2}\right)+\frac{1}{2}.\left(\frac{2.3}{2}\right)+\frac{1}{3}.\left(\frac{3.4}{2}\right)+....+\frac{1}{x}.\left[\frac{x\left(x+1\right)}{2}\right]=115\)
\(\Rightarrow\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{x+1}{2}=115\Rightarrow2+3+...+\left(x+1\right)=230\)
\(\frac{\Rightarrow\left[\frac{\left(x+1-2\right)}{1}+1\right].\left(x+1+2\right)}{2}=\frac{x.\left(x+3\right)}{2}=230\Rightarrow x.\left(x+3\right)=460\)
vì x và x+3 là 2 số tự nhiên cách nhau 3 đơn vị => \(x.\left(x+3\right)=460=20.23\Rightarrow x=20\)
Vậy x=20