(1-4/1)(1-4/9)(1-4/25)...(1-4/(2n-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1^2-2^2}{1^2}\right)\left(\frac{3^2-2^2}{3^2}\right)\left(\frac{5^2-2^2}{5^2}\right)...\left(\frac{\left(2n-1\right)^2-2^2}{\left(2n-1\right)^2}\right)\)
\(=\frac{-1\cdot3}{1^2}\cdot\frac{1\cdot5}{3^2}\cdot\frac{3\cdot7}{5^2}...\cdot\frac{\left(2n-3\right)\left(2n+1\right)}{\left(2n-1\right)^2}=-\frac{1}{1}\cdot\frac{2n+1}{2n-1}=-\frac{2n+1}{2n-1}\)
Ta có: \(1-\frac{4}{1}=-3=-\frac{2.1+1}{2.1-1}\)
\(-3.\left(1-\frac{4}{9}\right)=-3.\frac{5}{9}=-\frac{5}{3}=-\frac{2.2+1}{2.2-1}\)
\(-\frac{5}{3}.\left(1-\frac{1}{25}\right)=-\frac{5}{3}.\frac{21}{25}=-\frac{7}{5}=-\frac{2.3+1}{2.3-1}\)
.................................................................................
Vậy kết quả cuối cùng của biểu thức là: \(-\frac{2n+1}{2n-1}\)
\(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2x+1\right)^2}\right)\) \(\left(ĐK:n\ge1\right)\)
\(=\left(\frac{1-4}{1}.\frac{9-4}{9}.\frac{25-4}{25}....\frac{\left(2n-1\right)^2-4}{\left(2n-1\right)^2}\right)\)
\(=\frac{\left(1-2\right)\left(1+2\right)}{1}.\frac{\left(3-2\right)\left(3+2\right)}{3.3}.\frac{\left(5-2\right)\left(5+2\right)}{5.5}....\frac{\left(2n-3\right)\left(2n+1\right)}{\left(2n-1\right)^2}\)
\(=\frac{\left(-1\right).3}{1}.\frac{1.5}{3.3}.\frac{3.7}{5.5}....\frac{\left(2n-3\right)\left(2n+1\right)}{\left(2n-1\right)\left(2n-1\right)}\)
\(=-\frac{2n+1}{2n-1}\)
Sửa giúp mình dòng đầu lại thành:
\(\left(1-\frac{1}{4}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2n-1\right)^2}\right)\)