Mọi người giúp mk với ạ . Cảm ơn ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAD và ΔECG có
góc EAD=góc ECG
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>AD/CG=ED/EG
=>AD*EG=ED*CG
b: Xét ΔHEG và ΔHCB có
góc HEG=góc HCB
góc EHG=góc CHB
=>ΔHEG đồng dạng với ΔHCB
=>HE/HC=HG/HB
Xét ΔHAB và ΔHCG có
góc HAB=góc HCG
góc AHB=góc CHG
=>ΔHAB đồng dạng với ΔHCG
=>HA/HC=HB/HG
=>HC/HA=HG/HB
=>HC/HA=HE/HC
=>HC^2=HA*HE
c: HI//BA
=>HI/BA=CH/CA=CI/CB
HI//EG
=>HI/EG=BI/BC
HI/BA=CI/CB
HI/BA+HI/EG=BI/BC+CI/BC=1
=>HI(1/BA+1/EG)=1
=>1/BA+1/EG=1/HI
\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)
We substitute :
\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)
Then,
\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)
Finally,
\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)
\(\left|3x+2\right|=\left|4x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x-3\\3x+2=3-4x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-5\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2+3x=4x-3\\2+3x=3-4x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(A=x^2-4xy+4y^2+2x-4y+1+y^2+2y+1+2008\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\)
\(\Rightarrow A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
B A C H
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\)\(\frac{1}{9}=\frac{1}{25x^2}+\frac{1}{36x^2}\)
\(\Leftrightarrow\)\(\frac{61}{900x^2}=\frac{1}{9}\)
\(\Rightarrow\)\(900x^2=549\)
\(\Rightarrow\)\(x=\sqrt{\frac{549}{900}}=\frac{\sqrt{61}}{10}\)
\(\Rightarrow\)\(AB=\frac{\sqrt{61}}{2}\); \(AC=\frac{3\sqrt{61}}{5}\)
Áp dụng Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\) \(BC=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
\(\Leftrightarrow\)\(BC=\frac{\sqrt{61}}{10}.\sqrt{61}=6,1\)
p/s: bạn tham khảo nhé, do số không đẹp nên có lẽ mk tính toán sai 1 số chỗ, bạn bỏ qua và ktra nhé, sai đâu ib mk