tìm GTNN biết:
d) F = |4x - 3| + |5y + 7,5| +17,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=|4x-3|+|5y+7,5|+17,5\)
\(|4x-3|\ge0\)
\(|5y+7,5|\ge0\)
\(\Leftrightarrow|4x-3|+|5y+7,5|+17,5\ge17,5\)
Vậy \(MaxA=17,5\)khi \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
a) /4x - 3/ + /5y+7,5/ >= 0
=> C>= 17,5
=> C min = 17,5 <=> 4x-3 = 0 và 5y + 7,5 =0 <=> x = 3/4 và y = -3/2
b) Áp dụng /A/ = /-A/
=> D = /x-2001/ + /2002-x/
Lại áp dụng /a/ + /b/ >= /a+b/
=> D>= /x-2001+2002-x/ = 1
=> D min = 1 <=> (x - 2001)(2002 - x) >= 0 <=> 2001 <= x <= 2002
ta có \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow E\ge17,5\)
dấu = xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0,75\\y=1,5\end{cases}}}\)
GTNN của B là 17,5
x=3/4 ; y = 3/2
nha bạn
Vì ( 4x - 3 )2 ≥ 0 ∀ x ; | 5y + 7,5 | ≥ 0 ∀ y
=> B = ( 4x - 3 )2 + | 5y + 7,5 | + 17,5 ≥ 0 + 0 + 17,5 = 17,5
=> B nhận giá trị nhỏ nhận là 17,5
<=> x = \(\frac{3}{4}\) ; y = -1,5
\(B=\left(4x-3\right)^2+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu ''='' xảy ra khi x = 3/4 ; y = -3/2
Vậy GTNN của B bằng 17,5 tại x = 3/4 ; y = -3/2
Vì ( 4x - 3 )2 ≥ 0 ∀ x ; | 5y + 7,5 | ≥ 0 ∀ y
=> B = ( 4x - 3 )2 + | 5y + 7,5 | + 17,5 ≥ 0 + 0 + 17,5 = 17,5
=> B nhận giá trị nhỏ nhận là 17,5
<=> x = \(\frac{3}{4}\) ; y = -1,5
Vì : |4x-3| >= 0
|5y+7,5| >= 0
nên |4x-3|+|5y+7,5|+17,5>= 0+0+17,5
hay E>= 17,5
Dấu " =" xảy ra khi: \(\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\) <=>\(\hept{\begin{cases}4x=3\\5y=-7,5\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
Vậy MinE = 17,5 khi (x,y) = (\(\frac{3}{4}\); -1,5)
Ta có : \(\hept{\begin{cases}\left|4x-3\right|\ge0\forall x\\\left|5y+7,5\right|\ge0\forall y\end{cases}}\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
=> \(F=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
=> Min F = 17,5
Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,75\\y=-1,5\end{cases}}\)
Vậy Min F = 17,5 <=> x = 0,75 ; y = - 1,5