Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B\left(x\right)=x^4-x^2-8=0\left(1\right)\)
\(\text{Đặt: }\) \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-t-8=0\)
\(\Delta=\left(-1\right)^2-4\cdot8=-31< 0\)
\(\Rightarrow B\left(x\right)\text{vô nghiệm.}\)
Ta có:
4(x – 2) – 3x = x – 8
⇔ 4x – 8 – 3x = x – 8
⇔ x – 8 = x – 8 (thỏa mãn với mọi x)
Vậy phương trình đã cho có vô số nghiệm.
Xét \(f_{\left(x\right)}=m\left(m+8\right)x^2+2\left(m+8\right)x+9m+1\ge0\)
\(\Leftrightarrow\left(m^2+8m\right).x^2+2\left(m+8\right).x+9m+1\ge0\)
Để bpt vô nghiệm \(\left\{{}\begin{matrix}m^2+8m< 0\\9m^3-72m^2+8m+64< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< 0\\\left\{{}\begin{matrix}-3< m< \approx\dfrac{-3}{\sqrt{10}}\\m< \approx\dfrac{-3}{\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\)
=> \(-8< m< -\dfrac{3}{\sqrt{10}}\)
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp
Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực
Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0
(x^8 + x^2 ) -( x^5 + x) = -1 (**)
Vì (x^8 + x^2 ) > ( x^5 + x) nên (x^8 + x^2 ) -( x^5 + x) luôn lớn hơn 0 trái với (**)
Vậy đa thức R(x) vô nghiệm
Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1
Vì 2x^2 \(\ge\) 0 nên 2x^2+1 \(\ge\) 1
Vậy R(x) không có nghiệm
Chúc bạn hoc tốt! k mik nha
\(x^2+x+8\)
\(=\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}+8\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{31}{8}>0\) với mọi \(x\)
=> Vô nghiệm