Tìm các giá trị nguyên của a biết (a^2 - 1)(a^2 - 4)(a^2 - 7)(a^2 - 10)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=-3 -> a=3
a=0 -> a=0
a=7 -> a=7
a=-2 -> a=2
a=1 -> a=1
a=-9 -> a=9
a=4 ->a=4
\(=\left(\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x}{x+2}\right)\)
\(=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x}{x+2}\right)\)
Đổi 10-x lại thành\(10-x^2\) nha, mk thiếu! sorry!
\(=\left(\frac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{6}\)
\(=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=-\frac{1}{x-2}\)
\(VT=\left(a^2-1\right)\left(a^2-10\right)\left(a^2-4\right)\left(a^2-7\right)=\left(a^4-11a^2+10\right)\left(a^4-11a^2+28\right)\)
\(=\left(a^4-11a^2+19-9\right)\left(a^4-11a^2+19+9\right)=\left(a^4-11a^2+19\right)^2-81< 0\)
\(\Rightarrow\)\(\left(a^4-11a^2+19\right)^2< 81\)
\(\Leftrightarrow\)\(a^4-11a^2+19< 9\)
\(\Leftrightarrow\)\(\left(a^4-11a^2+\frac{121}{4}\right)-\frac{45}{4}< 9\)
\(\Leftrightarrow\)\(\left(a^2-\frac{11}{2}\right)^2< \frac{81}{4}\)
\(\Leftrightarrow\)\(a^2-\frac{11}{2}< \frac{9}{2}\)
\(\Leftrightarrow\)\(a^2< 10\)
\(\Leftrightarrow\)\(-\sqrt{10}< a< \sqrt{10}\)
Mà a nguyên nên \(4< a< 4\) hay \(a\in\left\{-3;-2;-1;0;1;2;3\right\}\)
Vậy \(a\in\left\{-3;-2;-1;0;1;2;3\right\}\)
Chúc bạn học tốt ~
PS : tham khảo nhé :))
Đề sai nhé, dấu \("\le"\) mới đúng :))
Hoặc có thể theo cách này
\(\left(a^4-11a^2+19\right)^2< 81\)
\(\Leftrightarrow\)\(-9< a^4-11a^2+\frac{121}{4}-\frac{45}{4}< 9\)
\(\Leftrightarrow\)\(\frac{9}{4}< \left(a^2-\frac{11}{2}\right)^2< \frac{81}{4}\)
\(\Leftrightarrow\)\(\frac{-9}{2}< a^2-\frac{11}{2}< \frac{9}{2}\)
\(\Leftrightarrow\)\(1< a^2< 10\)
\(\Leftrightarrow\)\(-\sqrt{10}< a< \sqrt{10}\)
... như cách trước
Chúc bạn học tốt ~
Lời giải:
ĐKXĐ: $x\neq \pm 2$
\(A=\left[\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right]:\frac{x^2-4+10-x^2}{x+2}\\ =\frac{x-2(x+2)+x-2}{(x-2)(x+2)}:\frac{6}{x+2}\\ =\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}\\ =\frac{-1}{x-2}=\frac{1}{2-x}\)
Để $A<0\Leftrightarrow \frac{1}{2-x}<0$
$\Leftrightarrow 2-x<0\Leftrightarrow x>2$
Kết hợp với ĐKXĐ suy ra $x>2$
b.
Với $x$ nguyên, để $A$ nguyên thì $1\vdots 2-x$
$\Rightarrow 2-x=1$ hoặc $2-x=-1$
$\Rightarrow x=1$ hoặc $x=3$
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }