x/y = 17/3 và x + y = -60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y = 17/13
=> x/17 = y/13
=> x + y/17 + 13 = x/17 = y/13 mà x+y=-60
=> -60/30 = x/17 = y/13
=> - 2 = x/17 = y/13
=> x = -34; y = -26
vậy_
Giải :
\(\frac{x}{17}=\frac{y}{13}=\frac{x+y}{17+13}\)mà x + y = -60
\(\Rightarrow\frac{x+y}{17+13}=\frac{-60}{30}=-2\)
\(\frac{x}{17}=-2\Rightarrow x=-34\)
\(\frac{y}{13}=-2\Rightarrow y=-26\)
Vậy : \(\hept{\begin{cases}x=-34\\y=-26\end{cases}}\)
Ta co:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{3}=\frac{y}{17}=\frac{x+y}{3+17}=3\)
\(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{y}{17}=3\Rightarrow y=51\)
b)Ta co:
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=2\)
\(\frac{2x}{38}=2\Rightarrow x=38\)
\(\frac{y}{21}=2\Rightarrow y=42\)
Ta co:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=4\)
\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=8\)
g)\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=2\)
\(\frac{x}{10}=2\Rightarrow x=20;\frac{y}{15}=2\Rightarrow y=30;\frac{z}{21}=2\Rightarrow z=42\)
Ta có:
\(\dfrac{x}{y}=\dfrac{17}{3}=\dfrac{x}{17}=\dfrac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
=>\(\dfrac{x}{17}=-3,x=-51\)
=>\(\dfrac{y}{3}=-3,y=-9\)
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\) và \(x+y=-60\)
\(\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
\(\Rightarrow\dfrac{x}{17}=-3\Rightarrow x=-51\)
và \(\dfrac{y}{3}=-3\Rightarrow y=-9\)
Vậy \(x=-51\) và \(y=-9\)
~ Học tốt nhé bạn~
sorry mik nhầm ở phần áp dụng :
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\) ( do x + y = -60 )
+) \(\dfrac{x}{17}=-3\Rightarrow x=-3.17=-51\)
+) \(\dfrac{y}{3}=-3\Rightarrow y=-3.3=-9\)
Vậy x = -51 , y = -9
Lời giải:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow \frac{x}{y}+1=\frac{17}{3}+1\)
\(\Rightarrow \frac{x+y}{y}=\frac{20}{3}\)
Thay \(x+y=-60\) ta có: \(\frac{-60}{y}=\frac{20}{3}\Rightarrow y=\frac{-60.3}{20}=-9\)
\(\Rightarrow x=-60-y=-60-(-9)=-51\)
Vậy \((x,y)=(-51, -9)\)
a) ta có: \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Do đó:
\(\frac{x}{17}=-3\Rightarrow x=17.\left(-3\right)=-51\)
\(\frac{y}{3}=-3\Rightarrow y=3.\left(-3\right)=-9\)
Vậy ...
b) Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{25}=\frac{100}{25}=4\)
Do đó:
\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
Vậy ...
c) Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+17y}{12+4x}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
\(\Rightarrow\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
\(\Rightarrow6+2x=5x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
và \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Leftrightarrow\left(1+5y\right).8=\left(1+7y\right).10\)
\(\Rightarrow8+40y=10+70y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=-\frac{1}{15}\)
Vậy...
hok tốt!!
\(\frac{x}{y}=\frac{17}{3}\)
=> \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{60}{20}=3\)
=>\(x=3.17=51,y=3.3=9\)
học tốt
Ta có :
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{60}{20}=3\)
+) \(\frac{x}{17}=3\Rightarrow x=51\)
+) \(\frac{y}{3}=3\Rightarrow y=9\)
Vậy x = 51 và y = 9
_Chúc bạn học tốt_
y \(\times\) \(\dfrac{16}{64}\) + y \(\times\) \(\dfrac{25}{100}\) + y \(\times\) \(\dfrac{1}{4}\) + y \(\times\) \(\dfrac{15}{60}\) - \(\dfrac{13}{15}\) = \(\dfrac{17}{15}\)
y \(\times\) ( \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)) - \(\dfrac{13}{15}\) = \(\dfrac{17}{15}\)
y = \(\dfrac{17}{15}\) + \(\dfrac{13}{15}\)
y = \(\dfrac{30}{15}\)
y = 2
Cái này bằng rủ em chơi oẳn tù tì ,em ra lá còn anh ra hôn má em
ta có : \(\frac{x}{7}=\frac{y}{13}\)
ADTCDTSBN :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\frac{x}{7}=2\Rightarrow x=14\)
\(\frac{y}{13}=2\Leftrightarrow y=26\)
KL : ...
kb nhoa
Theo đề ta có:
x+y=-60
\(\frac{x}{y}=\frac{17}{3}\Rightarrow3x=17y\Rightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tc dãy tỉ
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
\(\Rightarrow\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}\)
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-30\)
\(\Rightarrow\begin{cases}\frac{x}{17}=-30\rightarrow x=\left(-30\right)\cdot17=-510\\\frac{y}{3}=-30\rightarrow y=\left(-30\right)\cdot3=-90\end{cases}\)