Cho \(\frac{a}{b}\) = \(\frac{c}{d}\), chứng minh rằng (a +2c)(b +d) = (a +c)(b +2d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)
Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).
Có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)và\(\frac{a}{b}=\frac{2c}{2d}=\frac{a-2c}{b-2d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-2c}{b-2d}\left(=\frac{a}{b}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
\(\Rightarrow\frac{a+2c}{a-2c}=\frac{b+2d}{b-2d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng tính chất tỉ lệ thức ta được:
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(đpcm\right)\).
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a+2c}{b+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt a/b=c/d=k
=>a=bk ; b=a/k ; c=dk ; d= c/k
Ta có:(a+2c).(b+d)=(bk+2dk).(a/k+c/k)
=k.(b+2d).1/k.(a+c)
=(1/k).k.(b+2d).(a+c)=(a+c)(b+2d) =>đpcm
\(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\Leftrightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\)\(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)
Xét VP \(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) ->Đpcm