Số tự nhiên A=\(1+2^{3^{2012}}\) là số nguyên tố hay hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-)\(A=1+2^{3^{2012}}\) có là hợp số vì:
\(A=1+2^{3^{2012}}\\ \Leftrightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv0\left(mod3\right)\)
=> A là hợp số
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708
n>3=>n không chia hết cho 3
=>n2 không chia hết cho 3
=>n2=3q+1(tính chất của số chính phương)
=>n2+2012=3q+1+2012=3q+2013=3(q+671) chia hết cho 3
=>n2+2012 là hợp số
b) n chia cho 17 dư 13 => n - 13 chia hết cho 17
n chia cho 37 dư 23 => n - 23 chia hết cho 23
=> 2n - 26 chia hết cho 17 => 2n - 26 + 17 = 2n - 9 chia hết cho 17
2n - 46 chia hết cho 37 => 2n - 46 + 37 = 2n - 9 chia hết cho 37
=> 2n - 9 chia hết cho 17 và 37. 17 và 37 nguyên tố cùng nhau nên
2n - 9 chia hết cho 17.37 = 629
=> 2n - 9 + 629 chia hết cho 629
Hay 2n + 620 chia hết cho 629
mà 2n + 620 = 2.(n + 310) nên 2.(n + 310) chia hết cho 629 . vì 2 và 629 nguyên tố cùng nhau nên n + 310 chia hết cho 629
=> n chia cho 629 dư 319 (629 - 310 = 319)
câu 1(k≥0)
Ta có nếu k>1 thì x⋮1;k;23;và chính nó(loại)
Ta có nếu k=0 thì 23.0 =0 (loại vì 0 không phải là số nguyên tố
Ta có nếu k=1 thì 23.1=23 (chọn vì 23 là số nguyên tố
=>k=1
Câu 2
Vì 2 chia hết cho 1 và chính nó
còn các số chẵn khác thì sẽ có dạng 2k (k>1;k∈N*)
=>các số đó chia hết cho 2;1;k;và chính nó
p nguyen to >3 => p khong chia het cho 3 => p co dang 3k+1 va 3k+2
TH1 : p=3k+1=> p2+2012 = (3k+1)2+2012=9.k2+6k+1+2012=9k2+6k+2013 chia hết cho 3 =>là hợp số
TH2 : BAN TU THƯ TRƯỜNG HỢP p=3k+2 nhé
CÒN KẾT QUẢ THÌ NÓ LÀ HỢP SỐ
ban dua p ve dang 3k+1 va 3k+2 roi tinh p^2+2012 va thay no deu chia het cho 3 .Tu do p^2+2013 la hop so
\(A=1+2^{3^{2012}}\\ \Rightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv3\equiv0\left(mod3\right)\)
Vậy A là Hợp số
\(3\equiv-1\left(mod4\right)\Rightarrow3^{2012}\equiv1\left(mod4\right);2^{4k+1}=\left(2^4\right)^k.2=16^k.2\equiv1^k.2\equiv2\left(mod3\right)\Rightarrow A\equiv0\left(mod\right)va:A>3\Rightarrow Alahopso\)