Cho x+y=4 , x.y=3
Tính: A= x4+y4
B=x5+y5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh
Các câu b d tương tự
a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)
Ta có :
\(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{xy}{5.4}=\frac{180}{20}=9\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=9\Rightarrow x=45\\\frac{y}{4}=9\Rightarrow y=36\end{cases}}\)
Vậy ...
\(x\cdot y=3\Rightarrow x=\dfrac{3}{y}\\ \Rightarrow\dfrac{3}{y}+y=5\\ \Rightarrow y^2-5y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=\dfrac{5+\sqrt{21}}{2}\Rightarrow x=\dfrac{15-3\sqrt{21}}{2}\\y=\dfrac{5-\sqrt{21}}{2}\Rightarrow x=\dfrac{15+3\sqrt{21}}{2}\end{matrix}\right.\)
\(B=\left(2x-3y\right)\left(3y-2x\right)=-\left(2x-3y\right)^2\\ \Rightarrow\left[{}\begin{matrix}B\simeq-172,176\\B\simeq-790,823\end{matrix}\right.\)
\(C=x^5+y^5\\ \Rightarrow\left[{}\begin{matrix}C\simeq2525,096\\C\simeq613574,904\end{matrix}\right.\)
Em xem lại đề xem, bài này số xấu
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có VT:
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5\)
VT=VP
Vậy:...
Thực hiện phép nhân đa thức với đa thức ở vế trái
=> VT = VP (đpcm)
\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)
\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)
\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)
\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)
\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)\)
\(=10.26-\left(-3\right)^2.2=...\)
(x+y)5=32
⇔ x5+5x4y+10x3y2+10x2y3+5xy4+y5 = 32
⇔ x5+y5 = 32-5xy(x3+y3)-10x2y2(x+y)
= 32-5.(-3).26-10.(-3)2.2
= 242
Khi x = - 1; y = 1 thì xy = (-1).1= -1
Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6
= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6
= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6
= -1 – 1 + (-1) – 1 + (-1) – 1
= - 6
Chọn đáp án D
a, x+y=4
=>(x+y)2 = 42=16
<=>x2+2xy+y2=16
<=>x2+y2= 16-6=10
<=>(x2+y2)2 = 100
<=> x4+2x2y2+y4 = 100
<=> x4+y4 +2.3.3=100
<=> x4+y4 = 100 -18 = 82
=> (x4+y4)(x+y) = 328
<=> x5 +x4y + xy4 + y5 = 328
<=> x5 +xy(x3+y3) + y5 = 328
Mặt khác: (x+y)3=64
=> x3+y3+3xy(x+y)=64
<=>x3+y3 = 64-36=28
=> x5+y5 = 328 -84=244