Tìm x:
a) | x - 5 | = 4
b) | x + 9 | = 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, <=>x2 +6x+9-4x-12=0
<=> x2 +2x -3=0
<=> x2 +3x -x-3=0
<=> x.(x+3) - (x+3) =0
<=> (x-1)(x+3)=0
<=> x=1 hoặc x=-3
b, <=> x(x2 -25) - (x-3)(x+3)2 -7=0
<=> x3 -25x + (9-x2) (x+3) -7=0
<=> x3 -25x+ 9x+27-x3 -3x2 -7=0
<=> -3x2 -16x +20=0
<=>(3x-10)(x-2) =0 (đoạn này tự phân tích nha ^ ^)
<=> x= 10/3 hoặc x=2
Chúc bạn học tốt nha!
a) \(x^2-x+x=4\)
\(x^2=4\)
\(x=\pm2\)
b) \(3x\left(x-5\right)-2\left(x-5\right)=0\)
\(\left(x-5\right)\left(3x-2\right)=0\)
\(\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(a+b+c=5-3-2=0\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{c}{a}=\dfrac{-2}{5}\end{matrix}\right.\)
d) Đặt \(x^2=t\left(t\ge0\right)\) . Lúc đó phương trình trở thành :
\(t^2-11t+18=0\)
\(\left[{}\begin{matrix}t=9\left(tmđk\right)\\t=2\left(tmđk\right)\end{matrix}\right.\)
\(t=9\rightarrow x^2=9\rightarrow x=\pm3\)
\(t=2\rightarrow x^2=2\rightarrow x=\pm\sqrt{2}\)
a) 2 + 1/3 - x = 1 + 1/4
7/3 -x = 5/4
x = 7/3 - 5/4
x = 13/12
b) (2/7 x 2) : x = 1 :7/2
4/7 : x = 2/7
x = 4/7 : 2/7
x = 2
a) 2 + 1/3 - x = 1 + 1/4
7/3 -x = 5/4
x = 7/3 - 5/4
x = 13/12
b) (2/7 x 2) : x = 1 :7/2
4/7 : x = 2/7
x = 4/7 : 2/7
x = 2
2 : \(buổi \) \(sáng\) \(bán\) \(dc :\)
\((360 - 142 : 2 =109 l\)
\(buổi\) \(chiều\) \(bán\) \(dc :\)
\(360 - 109 = 251 l\)
\(1,\)
\(a,x\times\dfrac{3}{9}=\dfrac{9}{15}\) \(b,x:\dfrac{1}{2}=\dfrac{5}{6}\)
\(x=\dfrac{9}{15}:\dfrac{3}{9}\) \(x=\dfrac{6}{5}\times\dfrac{1}{2}\)
\(x=\dfrac{81}{45}=\dfrac{9}{5}\) \(x=\dfrac{6}{10}=\dfrac{3}{5}\)
\(2,\) có bạn làm rồi nhé ;>
\(3,\)
\(a,\dfrac{7}{12}+\dfrac{3}{4}\times\dfrac{2}{9}=\dfrac{7}{12}+\left(\dfrac{3}{4}\times\dfrac{2}{9}\right)=\dfrac{7}{12}+\dfrac{1}{6}=\dfrac{7}{12}+\dfrac{2}{12}=\dfrac{7+2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(b,\dfrac{8}{9}-\dfrac{4}{15}:\dfrac{2}{5}=\dfrac{8}{9}-\left(\dfrac{4}{15}:\dfrac{2}{5}\right)=\dfrac{8}{9}-\dfrac{2}{3}=\dfrac{8}{9}-\dfrac{6}{9}=\dfrac{8-6}{9}=\dfrac{2}{9}\)
a)
\(\left|x-5\right|=4\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-5=4\\x-5=-4\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=9\\x=1\end{array}\right.\)
Vậy x = 9 ; x = 1
b)
\(\left|x+9\right|=12\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+9=12\\x+9=-12\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-21\end{array}\right.\)
Vậy x = 3 ; x = - 21
\(\left|x-5\right|=4\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-5=4\\x-5=-4\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=4+5\\x=-4+5\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=9\\x=1\end{array}\right.\)
Vậy: \(x\in\left\{1;9\right\}\)
\(\left|x+9\right|=12\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+9=12\\x+9=-12\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=12-9\\x=-12-9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-21\end{array}\right.\)
Vậy: \(x\in\left\{-21;3\right\}\)