Bài 1 giải pt
\(\frac{2}{x-3}+\frac{x-5}{x-1}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ a/
\(\hept{\begin{cases}x-\sqrt{y+\sqrt{y-\frac{1}{4}}}=\frac{1}{2}\\y-\sqrt{x+\sqrt{x-\frac{1}{4}}}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{\left(\sqrt{y-\frac{1}{4}}+\frac{1}{2}\right)^2}=\frac{1}{2}\\y-\sqrt{\left(\sqrt{x-\frac{1}{4}}+\frac{1}{2}\right)^2}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{y-\frac{1}{4}}-\frac{1}{2}=\frac{1}{2}\\y-\sqrt{x-\frac{1}{4}}-\frac{1}{2}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{y-\frac{1}{4}}=1\\y-\sqrt{x-\frac{1}{4}}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-2x+1=y-\frac{1}{4}\left(1\right)\\y^2-2y+1=x-\frac{1}{4}\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\Rightarrow\left(x-y\right)\left(x+y-1\right)=0\)
Làm nốt
Bài 1:
a: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)-x\left(x+3\right)=-7x+3\)
\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)
=>0x=0(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
b: \(\Leftrightarrow2x+3< 6-3+4x\)
=>2x+3<4x+3
=>-2x<0
hay x>0
a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)
(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)
\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)
\(-x^3-x^2+9x+9=0\)
\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)
\(\left(x+1\right)\left(9-x^2\right)\)=0
(x+1)(3-x)(3+x)=0
*x+1=0 =>x=-1
*3-x=0=>x=3
*3+x=0=>x=-3
Điều kiện : \(x\ne\pm1\)
\(\frac{x+4}{x+1}+\frac{x}{x-1}=\frac{2x^2}{x^2-1}\)
\(\Rightarrow\frac{\left(x+4\right)\left(x-1\right)+x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{2x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\left(x+4\right)\left(x-1\right)+x\left(x+1\right)=2x^2\)
\(\Rightarrow x^2-x+4x-4+x^2+x=2x^2\)
\(\Rightarrow2x^2+4x+4=2x^2\)
\(\Rightarrow\left(x^2+4x+4\right)=2x^2-x^2\)
\(\Rightarrow\left(x+2\right)^2=x^2\)
\(\Rightarrow\left|x+2\right|=\left|x\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=x\\x+2=-x\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\in\varnothing\\x=1\end{array}\right.\) (loại )
Vậy phương trình vô nghiệm
Huyền Subi x2 + 2x - 15 - (x2 - 1) + 8 = 2x - 6 chứ, sao lại là 2x + 6 được, bạn xem lại xem!
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
\(\frac{3\text{x}-1}{x-1}-\frac{2\text{x}+5}{x+3}=1-\)\(\frac{4}{x^2+2\text{x}-3}\) \(\left(\text{Đ}K\text{X}\text{Đ}:x\ne1;x\ne-3\right)\)
\(\Leftrightarrow\frac{\left(3\text{x}-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2\text{x}+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow\left(3\text{x}-1\right)\left(x+3\right)-\left(2\text{x}+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)
\(\Leftrightarrow3\text{x}^2+8\text{x}-3-2\text{x}^2-3\text{x}+5=x^2+2\text{x}-3-4\)
\(\Leftrightarrow3\text{x}^2-2\text{x}^2-x^2+8\text{x}-3\text{x}-2\text{x}=-3-4+3-5\Leftrightarrow3\text{x}=-9\Leftrightarrow x=-3\)(không thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm
\(\frac{2}{x-3}+\frac{x-5}{x-1}=1\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{\left(x-3\right)\left(x-5\right)}{\left(x-1\right)\left(x-3\right)}=1\)
\(\Leftrightarrow\frac{2x-2+x^2-8x+15}{\left(x-3\right)\left(x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-6x+13}{x^2-4x+3}=1\)
\(\Leftrightarrow x^2-6x+13=x^2-4x+3\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Ta có :
\(\frac{2}{x-3}+\frac{x-5}{x-1}=1\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}+\frac{\left(x-5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-2}{\left(x-1\right)\left(x-3\right)}+\frac{x^2-8x+15}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-4x+3}{\left(x-1\right)\left(x-3\right)}\)
\(\Rightarrow2x-2+x^2-8x+15=x^2-4x+3\)
\(\Leftrightarrow x^2-x^2+2x+4x-8x=3+2-15\)
\(\Leftrightarrow-2x=-10\Leftrightarrow x=5\)
Vậy x = 5 là ngiệm của PT.