Tìm a,b sao cho:
\(a+b=7\left(a-b\right)\) và
\(ab=192\left(a-b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(HPT\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Leftrightarrow a^2+b^2+c^2=0\\ \Leftrightarrow a=b=c=0\left(a^2+b^2+c^2\ge0\right)\\ \Leftrightarrow A=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1+1-1=-1\)
Bài 2: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
Bài 3: Xác định a, b, c để x^3 - ax^2 + bx - c = (x - a) (x-b)(x-c) - Lê Tường Vy
Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)
b, Có lẽ là M trên tia Ox .
Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)
=> M là trung điểm của AB .
Đặt a - b = x, ta có:
a + b = 7x
ab = 192x
a = (7x + x) : 2 = 4x
b = 7x - 4x = 3x
a = 192x : 3x = 64
b = 192x : 4x = 48
Vậy a = 64 ; b = 48