K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

31 tháng 10 2021

a: \(=\left(x-y\right)\left(x+y\right)\)

\(=74\cdot100=7400\)

c: \(=\left(x+2\right)^3\)

\(=10^3=1000\)

31 tháng 10 2021

a) \(=\left(x-y\right)\left(x+y\right)\)

    Thay \(x=87;y=13\) ta đc:   \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)

b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

   Thay \(x=10;y=-1\) ta đc:

    \(10^3-\left(-1\right)^3=1000-1=999\)

c)\(=\left(x+2\right)^3\)

   Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)

d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)

   Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)

29 tháng 8 2023

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)

20 tháng 7 2023

Bài 6:

M= 2.2 - 2.3+3.2.3

M= 4 - 6 + 18

M= 20

Bài 7: 

P= 1.2 - 5.-1.-2 + 8.-2.2

P = 2 -10 -32

P= -44

Bài 8:

A (thiếu dữ kiện bn ơi)

B= -1.2 . 3.2 + -1.3 +3.3 +-1.3

B= -2 . 6 + -3 + 9 +-3

B= -2 . 6 - 3 + 9 - 3

B= -12 - 3 + 9 - 3

B= -9

10 tháng 12 2020

a) \(\left(x^5+4x^3-6x^2\right):4x^2\)

\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)

\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

b)  x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0

Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)

c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)

\(-x^3+\dfrac{3}{2}-2x\)

d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)

\(=x-4\)

(dùng hẳng đẳng thức thứ 7)

Bài 2 :

a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)

= 3x2 - 6x - 5x + 5x2 - 8x2 + 24

= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24 

= -11x + 24

b) (x - y)(x2 + xy + y2) + 2y3

= x3 - y3 + 2y3

= x3 + y3 

c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)

= (x - y)2 - 2(x - y)(x + y) + (x + y)2

= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2

 

18 tháng 10 2021

Bài 1 :

a]=  \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).

b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]

c]= -x3 -2x +\(\frac{3}{2}\).

d] = [ x3 - 64 ]  = [ x2 + 4x + 16][ x- 4].

3 tháng 8 2023

\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)

Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)

\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)

\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)

Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x +...
Đọc tiếp

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

làm ơn giúp mình 

1

10:

Vì n là số lẻ nên n=2k-1

Số số hạng là (2k-1-1):2+1=k(số)

Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương

11: 

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc {1;5;13;65}

=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
$x^3+y^3=(x+y)^3-3xy(x+y)=2^3-3xy.2=8-6xy$

$=8-3[(x+y)^2-(x^2+y^2)]=8-3(2^2-20)=56$

Đẳng thức nào sau đây là đúng:A. (x2−xy+y2)(x+y)=x3−y3B. (x2+xy+y2)(x−y)=x3−y3C. (x2+xy+y2)(x+y)=x3+y3D. (x2−xy+y2)(x−y)=x3+y3Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:A. 10x5−15x4+25x3B. −10x5−15x4+25x3C. −10x5−15x4−25x3D. .−10x5+15x4−25x3Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3xA. x – 8B. 8 – 4xC. 8 – xD. 4x – 8Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2...
Đọc tiếp

Đẳng thức nào sau đây là đúng:

A. (x2−xy+y2)(x+y)=x3−y3

B. (x2+xy+y2)(x−y)=x3−y3

C. (x2+xy+y2)(x+y)=x3+y3

D. (x2−xy+y2)(x−y)=x3+y3

Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:

A. 10x5−15x4+25x3

B. −10x5−15x4+25x3

C. −10x5−15x4−25x3

D. .−10x5+15x4−25x3

Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3x

A. x – 8

B. 8 – 4x

C. 8 – x

D. 4x – 8

Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằng

A. 24x5 + 20x4 + 12x3 – 4x2

B. -24x5 – 20x4 + 12x3 + 1

C. -24x5 – 20x4 + 12x3 – 4x2

D. -24x5 – 20x4 – 12x3 + 4x2

Câu 10. Tích (2x – 3)(2x + 3) có kết quả bằng

A. 4x2 + 12x+ 9

B. 4x2 – 9

C. 2x2 – 3

D. 4x2 + 9

Câu 11. Chọn câu đúng.

A. (x2 – 1)(x2 + 2x) = x4 – x3 – 2x

B. (x2 – 1)(x2 + 2x) = x4 – x2 – 2x

C. (x2 – 1)(x2 + 2x) = x4 + 2x3 – x2 – 2x

D. (x2 – 1)(x2 + 2x) = x4 + 2x3 – 2x

Câu 12. Tích của đơn thức x2 và đa thức là: A. B. C. D. Câu 13. Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

A. 0

B. 1

C. 19

D. – 19

1

Câu 1; B

Câu 2: B

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)