K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

\(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left[\left(\frac{1}{2}a+b\right)+\left(\frac{1}{2}a-b\right)\right].\left[\left(\frac{1}{2}a+b\right)^2-\left(\frac{1}{2}a+b\right).\left(\frac{1}{2}a-b\right)+\left(\frac{1}{2}a-b\right)^2\right]\)

Tới đấy phân tích ra là được nhé . Mình đang bận .

8 tháng 9 2016

\(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left(\frac{1}{2}a+b+\frac{1}{2}a-b\right)\left[\left(\frac{1}{2}a+b\right)^2-\left(\frac{1}{2}a+b\right)\left(\frac{1}{2}a-b\right)+\left(\frac{1}{2}a-b\right)^2\right]\)

\(=a\left(\frac{1}{4}a^2+ab+b^2-\frac{1}{4}a^2+b^2+\frac{1}{4a^2}-ab+b^2\right)\)

\(=a\left(\frac{1}{4}a^2+3b^2\right)\)

\(=\frac{1}{4}a^3+3ab^2\)

3 tháng 12 2018

help me, hic

4 tháng 12 2018

a, ĐK: \(a\ne0,b\ne0,a+b\ne0\)

\(A=\left[\frac{1}{a^2}+\left(\frac{1}{a}+\frac{1}{b}\right):\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)

\(=\left[\frac{1}{a^2}+\frac{a+b}{ab}:\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)

\(=\left[\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)

\(=\frac{\left(a+b\right)^2}{a^2b^2}.\frac{a^2b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}.\frac{1}{a+b}\)

\(=\frac{1}{a^2-ab+b^2}\)

b, \(a^2-ab+b^2=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2>0\left(a,b\ne0\right)\)

\(\Rightarrow A=\frac{1}{a^2-ab+b^2}>0\forall a;b\)

18 tháng 8 2023

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

3 tháng 11 2017

Áp dụng hằng đẳng thức mà làm 

3 tháng 11 2017

Hàng đẳng thức nào

10 tháng 5 2016

\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)

   \(=\left[\frac{a-b}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right]:\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{b}{a}}\)

    \(=\frac{a-b-a+a^{\frac{1}{2}}.b^{\frac{1}{2}}}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}.\frac{1}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}=\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}\frac{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}\sqrt{\frac{a}{b}}.\sqrt{\frac{a}{b}}=1\)

2 tháng 10 2017

bang@@@@@

9 tháng 7 2020

Trả lời 

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\)  \(\left(a\ge0.a\ne1\right)\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{1}{\left(a+1\right)^2}-\frac{1}{\left(a-1\right).\left(a+1\right)}\right]\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{a-1-a-1}{\left(a+1\right)^2.\left(a-1\right)}\right]\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.0\)

\(B=\frac{1}{a+1}\)

Vậy \(B=\frac{1}{a+1}\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)ĐK\left(a\ge0;a\ne1\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}-\frac{a^2+1}{\left(a^2-1\right)\left(a^2+1\right)}\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1-a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}\right)\)

\(=\frac{1}{a+1}\)

Vậy \(B=\frac{1}{a+1}\)