K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

\(5-\left(2+3x\right)^4\)

Ta có : \(\left(2+3x\right)^4\le0\)

\(\Rightarrow5-\left(2+3x\right)^4\le5\)

Dấu " = " xảy ra khi và chỉ khi \(\left(2+3x\right)^4=0\)

                                                    \(\left(2+3x\right)=0\)

                                                       \(3x=-2\)

                                                         \(x=-\frac{2}{3}\)

Vậy \(Max\) của \(5-\left(2x+3\right)^4\) là \(5\) xảy ra khi và chỉ khi \(x=-\frac{2}{3}\)

8 tháng 9 2016

GTLN là 5

2 tháng 5 2017

\(\frac{3x-2}{4}>\frac{3x+3}{6}\Rightarrow9x-6>6x+6\Rightarrow3x>12\Rightarrow x>4\)

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

2 tháng 4 2021

Trả lời:

Tìm GTLN của A=\(\frac{3x^2+14}{x^2+4}\)

=> tìm Max A=3+ \(\frac{2}{x^2+4}\)

A Max khi x2+4 min

mà x2+4>=4

=> A đạt GTLN khi X2+4=4 (tức x=0)

Với x=0, ta có: A= 14/4=7/2

2 tháng 4 2021

\(A=\frac{3x^2+14}{x^2+4}=\frac{3\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

Vì x2 + 4 ≥ 4 ∀ x

=> 2/x2 + 4 ≤ 1/2 ∀ x

=> 2/x2 + 4 + 3 ≤ 7/2 ∀ x

Đẳng thức xảy ra <=> x = 0

Vậy MaxA = 7/2

29 tháng 6 2017

Có 3x-4/x+2=2x-2

Để A đạt min khi

2x-2>=-4

=>2x>=-2

=>X=-1

7 tháng 9 2021

\(A=\dfrac{3x^2+3x+4}{x^2+x+1}=\dfrac{3\left(x^2+x+1\right)}{x^2+x+1}+\dfrac{1}{x^2+x+1}=3+\dfrac{1}{x^2+x+1}\)

Do \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Rightarrow\dfrac{1}{x^2+x+1}\le\dfrac{4}{3}\)

\(\Rightarrow A\le3+\dfrac{4}{3}=\dfrac{13}{3}\)

\(maxA=\dfrac{13}{3}\Leftrightarrow x=-\dfrac{1}{2}\)

7 tháng 9 2021

Ta có:\(\dfrac{3x^2+3x+4}{x^2+x+1}=\dfrac{3\left(x^2+x+1\right)+1}{x^2+x+1}=3+\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\Leftrightarrow\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A\le3+\dfrac{4}{3}=\dfrac{13}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)

11 tháng 6 2018

Ta có:

B = \(\frac{4}{5}-\left|3x-2\right|\le\frac{4}{5}\)
Để B đạt giá trị lớn nhất thì B \(=\frac{4}{5}\)
Hay |3x - 2| = 0
\(\Leftrightarrow3x-2=0\)\(\Leftrightarrow x=\frac{2}{3}\) 
Vậy giá trị lớn nhất của B là \(\frac{4}{5}\)khi x = \(\frac{2}{3}\)

7 tháng 9 2016

1) Ta có: \(-1+\left(8-4x\right)^2\ge-1\)

Dấu "=" xảy ra khi và chỉ khi (8 - 4x)2 = 0 => 8 - 4x = 0 => 4x = 8 => x = 2

Vậy GTNN của -1 + (8 - 4x)2 là -1 khi và chỉ khi x = 2

2) Ta có: \(5-\left(2+3x\right)^4\le5\)

Dấu ''='' xảy ra khi và chỉ khi (2 + 3x)4 = 0 => 2 + 3x = 0 => 3x = -2 => x = -2/3

Vậy GTLN của 5 - (2 + 3x)4 là 5 khi và chỉ khi x = -2/3

7 tháng 9 2016

(8-4x)2 >=0 nên -1+(8-4x)2 >=-1 nên GTNN: -1

Tương tự (2+3x)4 >=0 nên GTLN: 5

7 tháng 9 2016

min=-1 khi x=2

max=5 khi x=-6

7 tháng 9 2016

cho cách giải luôn đi kê hà my

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)