so sánh A= 2021 mũ 2 với B= 2020.2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+...2^{2021}\)
\(\Rightarrow A+1=1+2+2^2+...2^{2021}\)
\(\Rightarrow A+1=\dfrac{2^{2021+1}-1}{2-1}\)
\(\Rightarrow A+1=2^{2022}-1\)
\(\Rightarrow A=2^{2022}-2< 2^{2022}=B\)
\(\Rightarrow A< B\)
\(A=2+2^2+2^3+...+2^{2021}\\ \Leftrightarrow2A=2^2+2^3+2^4+...+2^{2022}\\ \Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2022}\right)-\left(2+2^2+2^3+...+2^{2021}\right)\\ \Leftrightarrow A=2^{2022}-2\\ 2^{2022}-2< 2^{2022}\Rightarrow A< B\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
Ta thấy: \(2^{2023}-1=2^{2023}-1\)
Vậy: \(A=B\)
\(5A=\dfrac{5^{2022}+5}{5^{2022}+1}=1+\dfrac{4}{5^{2022}+1}\)
Sửa đề: \(B=\dfrac{5^{2020}+1}{5^{2021}+1}\)
=>\(5B=\dfrac{5^{2021}+5}{5^{2021}+1}=1+\dfrac{4}{5^{2021}+1}\)
5^2022>5^2021
=>5^2022+1>5^2021+1
=>5A<5B
=>A<B
Ta có \(b-a=9.10^{2019}-\dfrac{9}{10^{2021}}>0\Rightarrow b>a\).
`A=2021^2=2021 . 2021`
`B=2020 . 2020`
`2021 > 2020`
`=>2021 . 2021 > 2020.2020`
`=> 2021^2 > 2020.2020`
`=> A>B`
\(A=2021^2\)
\(B=2020\cdot2020=2020^2\)
mà 2021>2020
nên A>B