tìm x, biết:
x^5 = x^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x-(5/6 -x) =x-2/3`
`x-5/6 +x -x+2/3 =0`
`x = 5/6-2/3 = 5/6 -4/6 = 1/6`
\(\frac{x-3}{x+5}=\frac{5}{7}\Rightarrow7\cdot\left(x-3\right)=5\cdot\left(x+5\right)\Rightarrow7x-21=5x+25\Rightarrow7x-5x=25+21\Rightarrow2x=46\Rightarrow x=\frac{46}{2}=23\)
x - 1 + x - 3 + x - 5 + x - 7 + .... + x - 201 = 202
Ta có : ( x + x + x + ... + x ) - ( 1 + 3 + 5 + 7 + .... + 201 ) = 202
Ta thấy 1 + 3 + 5 + 7 + .... + 201 là dãy cách đều 2 đơn vị . Số số hạng là : ( 201 - 1 ) : 2 + 1 = 101 ( số ) và tương ứng với 101 lần số x . Tổng của dãy là : ( 201 + 1 ) x 101 : 2 = 10201
Thay vào ta được : 101 . x - 10201 = 202
101 . x = 202 + 10201
101 . x = 10403
x = 10403 : 101
x = 103
Vậy x = 103
\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)
Vậy...
\(\frac{x}{3}+\frac{y}{5}=\frac{x+y}{3+5}\)
\(\frac{x}{3}+\frac{y}{5}=\frac{x}{8}+\frac{y}{8}\)
\(\Rightarrow\frac{x}{3}=\frac{x}{8};\frac{y}{5}=\frac{y}{8}\Rightarrow x=0;y=0\)
Ta có : `x/5=y/3` và `x-y=-2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5 = y/3 =(x-y)/(5-3)=(-2)/2=-1`
`=>x/5=-1=>x=-1.5=-5`
`=>y/3=-1=>y=-1.3=-3`
Vậy `x=-5;y=-3`
Áp dụng tính chất của DTSBN, ta được:
x/5=y/3=(x-y)/(5-3)=-2/2=-1
=>x=-5; y=-3
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
\(x^5=x^3\\ \Rightarrow x^5-X^3=0\\ \Rightarrow x^3\times\left(x^2-1\right)=0\\\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm1\end{cases}}\)
K cho k nha