Rút gọn biểu thức
2x(3x^3-x)-4x^2(x-x^2+1)+(x-3x^2)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)
\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)
a. \(4x\left(3x-2\right)-3x\left(4x+1\right)\)
\(=12x^2-8x-12x^2-3x\)
\(=-11x\) \(\left(1\right)\)
Thay \(x=-2\) vào \(\left(1\right)\) ta được :
\(-11.\left(-2\right)=22\)
b. \(\left(x+3\right)\left(x-3\right)-\left(x-1\right)^2\)
\(=\left(x^2-9\right)-\left(x^2-2x+1\right)\)
\(=x^2-9-x^2+2x-1\)
\(=2x-10\) \(\left(2\right)\)
Thay \(x=6\) vào \(\left(2\right)\) ta được :
\(2.6-10=2\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
a) \(\left(x-3\right)\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.\left(3x+2\right)-3.\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.3x+x.2-3.3x-3.2-3x.x+3x.5+3\)
\(=3x^2+2x-9x-6-3x^2+15x+3\)
\(=8x-3\)
b )
\(2x\left(x-3\right)-\left(x-5\right)\left(2x-1\right)\)
\(2x.x-2x.3-x.\left(2x-1\right)-5.\left(2x-1\right)\)
\(2x.x-2x.3-x.2x+x.1-5.2x+5.x\)
\(2x^3-6x-2x^2+x-10x+5x\)
\(2x^3-15x-2x^2\)
f: Ta có: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
g: Ta có: \(3\left(x+2\right)^2-\left(3x+1\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=3\left(x^2+4x+4\right)-\left(3x^2+16x+5\right)+x^2+10x+25\)
\(=3x^2+12x+12-3x^2-16x-5+x^2+10x+25\)
\(=x^2+6x+32\)
e) (x+1)2+(x-1)2-2(1+x)(1-x)
= (x+1)2 + 2(1+x)(x-1) + (x-1)2
= (x+1+x-1)2
= 4x2
a: Ta có: \(\left(x+1\right)^2+\left(x-1\right)^2-2\left(1+x\right)\left(1-x\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x+1+x-1\right)^2\)
\(=4x^2\)
c: Ta có: \(3\left(x+2\right)^2-\left(3x+1\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=3x^2+12x+12-3x^2-16x-5+x^2+10x+25\)
\(=x^2+6x+32\)
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
2x(3x3-x)-4x2(x-x2+1)+(x-3x2)x
=6x4-2x2+4x4-4x3-4x2+x2-3x3
=(6x4+4x4)+(-4x3-3x3)+(-4x2-x2)
=10x4-7x3-5x2
\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\\ =6x^4-2x^2+4x^4-4x^3-4x^2+x^2-3x^3\\ =\left(6x^4+4x^4\right)+\left(-4x^3\right)-3x^3+\left(-4x^2-x^2\right)\)
\(=10x^4-7x^3-5x^2\)