Tìm a , b để x^4−3x^3+3x^2+ax+b⋮x^2−3x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. đặt tính
x4-2x3-2x2+ax+b / x2-3x+2
x4-3x3 x2+x+1
x3-2x2+ax+b
x3-3x2+2x
x2+(a-2)x+b
x2-3x+2
=> để f(x) chia hết cho g(x) =>\(\orbr{\orbr{\begin{cases}a-2=-3=>a=-1\\b=2\end{cases}}}\)
b. làm tương tự câu a
Ta có x^4-3x^3+3x^2+ax+b= (x2 -3x + 4)( x2 - 1) + (ax - 3x) + (b - 4)
Để đây là phép chia hết thì (ax - 3x) = 0 và (b - 4) = 0
Hay a=3 và b =4
\(\Leftrightarrow-4x^2+12x-16+\left(a-12\right)x+\left(b+16\right)⋮x^2-3x+4\)
=>(a,b)=(12;-16)
\(\Leftrightarrow-4x^2+12x-16+\left(a-12\right)x+b+16⋮x^2-3x+4\)
=>a=12 và b=-16
Đặt thương của phép chia x4+ax2+1 cho x2+x+1 là (mx2 + nx + p)
<=>x4+ax2+1=(x2 +x+1)(mx2 +nx+p)
<=>x4+ax2+1= m4+nx3 + px2+ mx3+nx2 + px + mx^2 + nx + p
<=> x4+ax2+ 1= mx4+x3(m+n)+x2(p + n)+x(p + n)+p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì x4+ax2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x4+ ax2 + 1 chia hết cho x2 + 2x + 1
còn tính b = mấy nữa mà
giúp mk vs