K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

Đặt \(2x^2-3x-1=t\)

\(t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left(t-4\right)\left(t+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-1\end{cases}}\)

Với \(t=4\):

\(2x^2-3x-1=4\)

\(\Leftrightarrow2x^2-3x-5=0\)

\(\Leftrightarrow2x^2+2x-5x-5=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

Với \(t=-1\):

\(2x^2-3x-1=-1\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

12 tháng 2 2023

Đặt \(t=2x^2-3x-1\)

\(\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Rightarrow t^2-3t+12-16=0\)

\(\Rightarrow t^2-3t-4=0\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=-1\\t_2=4\end{matrix}\right.\)

\(TH_1:t=-1\)

\(\Leftrightarrow2x^2-3x-1=-1\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

\(TH_2:t=4\)

\(\Leftrightarrow2x^2-3x-1=4\)

\(\Leftrightarrow2x^2-3x-5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1b) Tìm nghiệm của đa thức: f(x) = 2x2 - x Bài 2:Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;                                            h(x) = 2x2 + 1a) Tính g(x) - f(x) + h(x)b)Tính f(- 1) - h(1/2)c) Với giá trị nào của x thì f(x) = h(x) Bài 3:Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M...
Đọc tiếp

Bài 1:

a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1

b) Tìm nghiệm của đa thức: f(x) = 2x- x

 

Bài 2:

Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;

                                            h(x) = 2x2 + 1

a) Tính g(x) - f(x) + h(x)

b)Tính f(- 1) - h(1/2)

c) Với giá trị nào của x thì f(x) = h(x)

 

Bài 3:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC

a) Chứng minh tam giác ADC = tam giác DAE

b) Chứng minh tam giác ABD là tam giác cân

c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?

ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !

       

 

 

 

0
AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

12 tháng 11 2021

PT có 2 no âm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

12 tháng 11 2021

Mình chưa hiểu ngay chỗ \(\dfrac{-m+1}{-2}\)> 0  ➜ -m+1<0   v   á.

8 tháng 2 2023

kh hiểu bn ơi

8 tháng 2 2023

vậy mik đăng lại

31 tháng 8 2021

a) 2x2 - 3x - 2 = 0.

<=> (2x + 1)(x - 2) = 0

<=> 2x + 1 = 0 hoặc x - 2 = 0

<=> x = -1/2 hoặc x = 2

31 tháng 8 2021

b) 3x2 - 7x - 10 = 0.

<=> (x + 1)(3x - 10) = 0

<=> x = -1 hoặc x = 10/3

24 tháng 4 2020

Bài 1 : 

Để phương trình có 2 nghiệm x1 , x2 

\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)

\(\Rightarrow m\le1\)

\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)

Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)

Vì \(x_1=-3\) là 1 nghiệm của phương trình

\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)

 
24 tháng 4 2020

Bài 2 : 

\(ĐKXĐ:x\ne\pm4\)

Ta có : 

\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)

\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)

\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)

\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)

\(\Rightarrow5x^2+2x=5x^2+16\)

\(\Rightarrow2x=16\)

\(\Rightarrow x=8\)