K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

bạm oi đay đau phải câu hỏi

25 tháng 10 2018

Nesbit:v dài

25 tháng 10 2018

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

18 tháng 2 2022

Nguyễn Thu Thủy Ngân

18 tháng 4 2022

What ???

 

29 tháng 7 2015

tớ làm bài trên trước rùi làm cho bạn

12 tháng 9 2017

\(x^2\left(y^2+z^2-x^2\right)+y^2\left(z^2+x^2-y^2\right)+z^2\left(x^2+y^{ 2}-z^2\right)\)

\(=x^2\left[\left(y+z\right)^2-x^2-2yz\right]+y^2\left[\left(z+x\right)^2-y^2-2zx\right]+z^2\left[\left(x+y\right)^2-z^2-2xy\right]\)

\(=x^2\left[\left(y+z-x\right)\left(y+z+x\right)-2xy\right]+y^2\left[\left(z+x-y\right)\left(z+x+y\right)-2zx\right]\)

\(+z^2\left[\left(x+y-z\right)\left(x+y+z\right)-2xy\right]\)

\(=x^2\left[\left(y+z-x\right).0-2yz\right]+y^2\left[\left(z+x-y\right).0-2zx\right]+z^2\left[\left(x+y-z\right).0-2xy\right]\)

\(=x^2\left(-2yz\right)+y^2\left(-2zx\right)+z^2\left(-2xy\right)\)\(=-2x^2yz-2xy^2z-2xyz^2\)

\(=-2xyz\left(x+y+z\right)=-2xyz.0=0\)