Tính nhanh: B=22 + 32 + 42 + ... + 502 + 512
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
76502 - x = 10512 : 32
76502 - x = 328,5
x = 76502 - 328,5
x = 76173,5
Đúng nha
76 502 - x = 10 512 : 32
76 502 - x = 3285
x = 76 502 - 3285
x = 73 244
\(A=1^2+2^2+3^2+....+10^2\\ A=1^{ }+\left(1+1\right)\cdot2+3\cdot\left(2+1\right)+.....+10\cdot\left(9+1\right)\\ A=1+2\cdot1+2+3\cdot2+3+....+10\cdot9+10\\ A=\left(1+2+3...+10\right)+\left(1\cdot2+3\cdot2+.....+10\cdot9\right)\)
Gọi 1+2+3+...+10 là P
Số số hạng là: (10 - 1) : 1 +1 = 10 (số)
P = (10+1) . 10 : 2 = 55
P = 55
Gọi \(1\cdot2+2\cdot3+....+9\cdot10\) là C
\(C=1\cdot2+2\cdot3+....+9\cdot10\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+....+9\cdot10\cdot3\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+9\cdot10\cdot\left(11-8\right)\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+.....+9\cdot10\cdot11-8\cdot9\cdot10\\ 3\cdot C=9\cdot10\cdot11\\ 3\cdot C=990\\ C=330\)
\(=>A=P+C\\ =>A=55+330\\ A=385\)
b)
\(B=5^2+10^2+15^2+...+50^2\\ B=5^2+\left(2\cdot5\right)^2+\left(3\cdot5\right)^2+....+\left(5\cdot10\right)^2\\ B=5^2+2^2\cdot5^2+3^2\cdot5^2+...+5^2\cdot10^2\\ B=5^2\cdot\left(1+2^2+3^2+....+10^2\right)\\ B=25\cdot\left(1+2^2+3^2+....+10^2\right)\)
\(\left(1+2^2+3^2+....+10^2\right)=A\)
\(=>B=25\cdot A\\ B=25\cdot385\\ B=9625\)
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385 = 1540
50 - 52 + 40 - 42 + 30 - 32 + 20 - 22 +10 - 12 + 60
=(50 - 52) + (40 - 42) + (30 - 32) + (20 - 22) +(10 - 12) + 60
=(-2)+(-2)+(-2)+(-2)+(-2)+60
=(-10)+60
50
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a) A= 54 . 34- (152-1).(152+1)
=(5.3)4-154-1
=154-154-1
=-1
Ta có : \(1^2+2^2+3^2+.....+10^2=385\)
\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)
Ta có công thức sau
\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)
Ta sẽ chứng minh nó bằng quy nạp
Với n=1 ta có VT=12=1, VP=\(\frac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}=1\) => (1) đúng với n=1
Giả sử đúng với n=k, ta sẽ chứng minh đúng với k+1
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
Ta lại có \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Vậy theo nguyên tắc quy nạp ta có Đpcm
=>B=22 + 32 + ... + 502 + 512
=>B+12=12+22 + 32 + ... + 502 + 512
=>B+1=\(\frac{51\left(51+1\right)\left(2\cdot51+1\right)}{6}=45526\)
=>B=45526-1=45525
- Công thức của tuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii :D :D :D