Tìm x bik
( x-1)\(^{x+2}\) = ( x-1)\(^{x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7\(\dfrac{3}{5}\) : \(x\) = 5\(\dfrac{4}{15}\) - 1\(\dfrac{1}{6}\)
\(\dfrac{38}{5}\) : \(x\) = \(\dfrac{79}{15}\) - \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{41}{10}\)
\(x\) = \(\dfrac{38}{5}\) : \(\dfrac{41}{10}\)
\(x\) = \(\dfrac{76}{41}\)
b, \(x\) \(\times\) 2\(\dfrac{2}{3}\) = 3\(\dfrac{4}{8}\) + 6\(\dfrac{5}{12}\)
\(x\) \(\times\) \(\dfrac{8}{3}\) = \(\dfrac{7}{2}\) + \(\dfrac{77}{12}\)
\(x\) \(\times\) \(\dfrac{8}{3}\) = \(\dfrac{119}{12}\)
\(x\) = \(\dfrac{119}{12}\)
\(x\) = \(\dfrac{119}{12}\): \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{119}{32}\)
c) (x - 1)(y + 1) = 5
=> x - 1 và y + 1 là các ước của 5
Ư(5) = {1; -1; 5; -5}
Lập bảng giá trị:
x - 1 | 1 | 5 | -1 | -5 |
y + 1 | 5 | 1 | -5 | -1 |
x | 2 | 6 | 0 | -4 |
y | 4 | 0 | -6 | -2 |
Vậy các cặp (x,y) cần tìm là:
(2; 4); (6; 0); (0; -6); (-4; -2).
(x-1).(y+1) = 5
=> x-1 và y+1 ∈ Ư(5) = {-1;-5;1;5}
Ta có bảng sau :
x-1 | -1 | -5 | 1 | 5 |
y+1 | -5 | -1 | 5 | 1 |
x | 0 | -4 | 2 | 6 |
y | -6 | -2 | 4 | 0 |
vậy ta có các cặp số (x;y) là :
(0;-6);(-4;-2);(2;4);(6;0)
x+2 là ước cảu x+ 7
\(\Rightarrow x+7⋮x+2\)
\(\Rightarrow x+2+5⋮x+2\)
mà \(x+2⋮x+2\)
\(\Rightarrow x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{-1;\pm3;-7\right\}\)
Câu hỏi của Lê Vũ Anh Thư - Toán lớp 7 - Học toán với OnlineMath
\(pt< =>\left(x-1-2\sqrt{x-1}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(< =>\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
..............................
A^2 + B^2 = 0 <=> A= 0 và B=0
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...
vì x+2\(\ne\)x+4
\(\Rightarrow\)\(\left[\begin{array}{nghiempt}x-1=0\\x-1=1\\x-1=-1\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=1\\x=2\\x=0\end{array}\right.\)
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow x+2=x+4\)
\(\Leftrightarrow0x=2\) (không thỏa mãn)
Vậy không có giá trị nào của x thỏa mãn phương trình