(x + 3)3-x(x2-9x) =27
khai triển HĐT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(64a^2-27=\left(8a\right)^2-25-2=\left(8a-5\right)\left(8a+5\right)-2\)
a) \(=4x^2-12x+9\)
b) \(=4x^2+2x+\dfrac{1}{4}\)
c) \(=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)
1.
$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$
2.
a)
$x^3-9x^2+27x-27=-8$
$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$
$\Leftrightarrow (x-3)^3=-8=(-2)^3$
$\Rightarrow x-3=-2$
$\Leftrightarrow x=1$
b)
$64x^3+48x^2+12x+1=27$
$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$
$\Leftrightarrow (4x+1)^3=3^3$
$\Rightarrow 4x+1=3$
$\Leftrightarrow x=\frac{1}{2}$
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
\(\left(3x^2-2y\right)^3=27x^6-54x^4y+36x^2y^2-8y^3\)
Bài 1:
\(\left(3x+4\right)^2=9x^2+24x+16\)
\(\left(x-1\right)^2=x^2-2x+1\)
\(\left(x-3\right)^2=x^2-6x+9\)
\(\left(\dfrac{1}{2}x-5\right)^2=\dfrac{1}{4}x^2-5x+25\)
\(x^2-1=\left(x+1\right)\left(x-1\right)\)
\(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
\(x^2-2=\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)\)
\(4x-\dfrac{1}{9}=\left(2\sqrt{x}+\dfrac{1}{3}\right)\left(2\sqrt{x}-\dfrac{1}{3}\right)\)
Bài 3:
\(x^2-2x+1=\left(x-1\right)^2\)
\(x^2-10x+25=\left(x-5\right)^2\)
\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
\(\left(2x-3\right)\left(2x+3\right)=4x^2-9\)
\(\left(\dfrac{2}{3}x+5\right)\left(\dfrac{2}{3}x-5\right)=\dfrac{4}{9}x^2-25\)
xin lỗi vì ko giúp đc zì !!! Tại ....... e ms lớp 6 à !!!!
a) \(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)( Áp dụng hằng đẳng thức số 3 )
b) ko khai phân tích dc bạn ạ
c)
\(F=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\\=\left[\left(3x+2\right)^2+2.\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\right]\\ =\left[\left(3x+2\right)+\left(3x-2\right)\right]^2\\ =\left(6x\right)^2=36x^2\\ Thay.x=-\dfrac{1}{3}.vào.F.thu.gọn:\\ F=36x^2=36.\left(-\dfrac{1}{3}\right)^2=36.\left(\dfrac{1}{9}\right)=4\)
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
\(\left(x+3\right)^3-x\left(x-9x\right)=27\)
\(\Rightarrow x^3+9x^2+27x-x^3-9x^2=27x\)
\(\Rightarrow\left(x^3-x^3\right)+\left(9x^2-9x^2\right)+27x=27\)
\(\Rightarrow27x=27\)
\(\Rightarrow x=1\)
Vậy x=1