K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

6sinx2cos3x=5sin2xcosx
6sinx2cos3x=10sinxcos2x
3sinxcos3x=5sinxcos2x
3sinx(sin2x+cos2x)cos3x=5sinxcos2x
3sin3x2sinxcos2xcos3x=0
Do cosx=0 ko phải là nghiệm của pt nên ta chia cả 2 vế của pt cho cos2x....Khi đó ta được pt tương đương:
3tan3x2tanx1=0(tanx1)(3tan2x+3tanx+1)=0

đến đây bạn cho từng cái bằng 0 là giải ra được

27 tháng 7 2016

bài của mình là

6sinx-2cos^3x=5sin2xcosx

​​chứ không phải là

6sinx cos3

x=5sin2xcosx

NV
18 tháng 8 2020

a/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tan^3x+2tan^2x=tanx\)

\(\Leftrightarrow tanx\left(3tan^2x+2tanx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\3tan^2x+2tanx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=-1\\tanx=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

b/ \(\Leftrightarrow3sinx+cos^3x=5sinx.cos^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tanx.\frac{1}{cos^2x}+1=5tanx\)

\(\Leftrightarrow3tanx\left(1+tan^2x\right)-5tanx+1=0\)

\(\Leftrightarrow3tan^3x-2tanx+1=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+1\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
18 tháng 8 2020

b/ ĐKXĐ: \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

\(6sinx-2cos^3x=\frac{10sin2x.cos2x.sinx}{2cos2x}\)

\(\Leftrightarrow6sinx-2cos^3x=5sin2x.sinx\)

\(\Leftrightarrow3sinx-cos^3x=5cosx.sin^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tanx\left(1+tan^2x\right)-1=5tan^2x\)

\(\Leftrightarrow3tan^3x-5tan^2x+3tanx-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x-2tanx+1\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\) (ko thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

NV
18 tháng 8 2020

d/

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)

\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)

\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

26 tháng 7 2017

8 tháng 8 2019

Đáp án A

hXZn3cW6mMyE.png

Đặt ThpHl41H63PY.png 

Yều cẩu bào toán trở thành: Tìm m để bất phương trình U9qHjbhMT16G.png nghiệm đúng với mọi ocwst4Q8idfL.png 

Từ đồ thị đã cho, ta suy ra đồ thị của hàm số 27xntKD12Wll.png 

Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là saK3RoshDFzu.png