6sinx-2cos^3x=5sin2xcosx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tan^3x+2tan^2x=tanx\)
\(\Leftrightarrow tanx\left(3tan^2x+2tanx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\3tan^2x+2tanx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=-1\\tanx=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow3sinx+cos^3x=5sinx.cos^2x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tanx.\frac{1}{cos^2x}+1=5tanx\)
\(\Leftrightarrow3tanx\left(1+tan^2x\right)-5tanx+1=0\)
\(\Leftrightarrow3tan^3x-2tanx+1=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+1\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
b/ ĐKXĐ: \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
\(6sinx-2cos^3x=\frac{10sin2x.cos2x.sinx}{2cos2x}\)
\(\Leftrightarrow6sinx-2cos^3x=5sin2x.sinx\)
\(\Leftrightarrow3sinx-cos^3x=5cosx.sin^2x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tanx\left(1+tan^2x\right)-1=5tan^2x\)
\(\Leftrightarrow3tan^3x-5tan^2x+3tanx-1=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x-2tanx+1\right)=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\) (ko thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)
\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)
\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Đáp án A
Đặt
Yều cẩu bào toán trở thành: Tìm m để bất phương trình nghiệm đúng với mọi
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là
6sinx−2cos3x=5sin2xcosx
⇔6sinx−2cos3x=10sinxcos2x
⇔3sinx−cos3x=5sinxcos2x
⇔3sinx(sin2x+cos2x)−cos3x=5sinxcos2x
⇔3sin3x−2sinxcos2x−cos3x=0
Do cosx=0 ko phải là nghiệm của pt nên ta chia cả 2 vế của pt cho cos2x....Khi đó ta được pt tương đương:
⇔3tan3x−2tanx−1=0⇔(tanx−1)(3tan2x+3tanx+1)=0
đến đây bạn cho từng cái bằng 0 là giải ra được
bài của mình là
6sinx-2cos^3x=5sin2xcosx
chứ không phải là
6sinx cos3
x=5sin2xcosx