Chứng minh trong một tam giác vuông , cạnh đối diện với góc 30 độ = 1/2 cạnh huyền
Giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Vậy trong một tam giác vuông , cạnh đối diện với góc 30 độ = 1/2 cạnh huyền
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
*Chứng minh :
- Có ^ACB = 30° --> ^ABC = 60° ( do tổng 3 góc trong 1 tam giác = 180°)
- Gọi M là trung điểm BC --> MB = MC = BC/2
- Trong tam giác vuông thì đường trung tuyến xuất phát từ đỉnh góc vuông = 1/2 cạnh huyền --> AM = 1/2BC = BM
- Xét ∆ABM có AM = BM --> ∆ABM cân cại M,lại có ^ABM = 60°
--> ∆ABM là tam giác đều (tam giác cân có 1 góc = 60° thì là tam giác đều)
--> AB = AM = BM = 1/2BC (đpcm)
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc) (đpcm)
A B C M
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)
A B C M
Gọi M là trung điểm của tam giác vuông ABC tại A, AB bằng nửa BC.
=> AM là đường trung tuyến của tam giác ABC.
\(\Rightarrow\hept{\begin{cases}AM=\frac{1}{2}BC\\AB=\frac{1}{2}BC\end{cases}}\)
\(\Rightarrow AB=AM=\frac{1}{2}BC=BM.\)
\(\Rightarrow\Delta ABM\) đều.
\(\Rightarrow\widehat{B}=60^0.\)
\(\Rightarrow\widehat{C}=90^0-60^0=30^0\)
Vậy nếu 1 cạnh góc vuông của 1 tam giác vuông bằng nửa cạnh huyền thì góc đối diện với cạnh đó bằng 30 độ.
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Nêu bạn thấy mình làm đúng thì tích nha
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc C=60 độ
Gọi M là trung điểm của BC
ΔABC vuông tại A có AM là trung tuyến
nen MA=MB=MC
=>MA=MC
mà góc C=60 độ
nên ΔMAC đều
=>AC=AM=BC/2(ĐPCM)
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
Mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>Tam giác AMC cân tại M(dấu hiệu nhận biết)
Mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
Mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Suy ra ta có điều phải chứng minh