Tìm x,y biết:
x . (y-3) = -12
Giúp đõ mk vs nha! THANKS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x/2=y/3 =>x/8=y/12 (1)
y/4=z/5 =>y/12=z/15 (2)
Từ 1 và 2 => x/8=y/12=z/15
=> (x/8)2=(y/12)2=z/15
hay x2/64=y2/144=z/15
Áp dụng t/c của dãy tỉ số bằng nhau,có
x2/64=y2/144=z/15=(x2 - y2)/(64 - 144)= -16/-80=1/5
Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5
=>x=\(\sqrt{\frac{64}{5}}\)
y2/144=1/5 => y2=144 . 1/5=144/5
=>y=\(\sqrt{\frac{144}{5}}\)
z/15 = 1/5 => z =15 . 1/5=3
mk lm sai thì thôi nha ^-^
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-11}=\dfrac{y}{16}=\dfrac{y-x}{16+11}=\dfrac{21}{27}=\dfrac{7}{9}\)
Do đó: x=-77/9; y=112/9
Ta có :
\(x:y:z=4:6:8=2:3:4\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=> x= 2k
=> y = 3k
=> z = 4k
Thay vào biểu thức:
2x + y - 3z = 5
=> 4k + 3k - 12k = 5
=> -5k = 5
=> k = -1
=> x = -2 ; y = -3 ; z = -4
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))
Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:
\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)
Đẳng thức xảy ra khi \(x=y=\pm2\)
*)Nếu \(xy\ge0\Rightarrow A\ge4\)
*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\). \(y\rightarrow-z\left(z>0\right)\)
Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)
\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)
\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)
M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014
M=4.0+21xy.0+7x2y2.0+2014
M=0+0+0+2014=2014
nhớ
ko cho ko đâu
\(\Leftrightarrow\left(x,y-3\right)\in\left\{\left(1;-12\right);\left(-12;1\right);\left(2;-6\right);\left(-6;2\right);\left(3;-4\right);\left(-4;3\right);\left(4;-3\right);\left(-3;4\right);\left(6;-2\right);\left(-2;6\right);\left(12;-1\right);\left(-1;12\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;-9\right);\left(-12;4\right);\left(2;-3\right);\left(-6;5\right);\left(3;-1\right);\left(-4;6\right);\left(4;0\right);\left(-3;7\right);\left(6;1\right);\left(-2;9\right);\left(12;2\right);\left(-1;15\right)\right\}\)