CMR
\(81^7-27^9-9^{13}⋮405\)
\(8^7-2^{18}⋮14\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 87-218
=(23)7-218
=221-218
=218.(23-1)
=218. 7
=217.2.7
=217.14 chia het cho 14
81^7-27^9-9^13
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=(3^26.3^2)-(3^26.3^1)-(3^26.1)
=3^26.(9-3-1)
=3^22.(3^4.5)
=3^22.405 chia het cho 405
=> 81^7-27^9-9^13 chia het cho 405
a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{22}\left(3^6-3^5-3^4\right)\)
\(=3^{22}\times405\)
\(\Rightarrow81^7-27^9-9^{13}⋮405\)(vì có chứa thừa số 405)
b) Ta có: \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{17}\left(2^4-2\right)=2^{17}\times14\)
\(\Rightarrow8^7-2^{18}⋮14\)(vì có chứa thừa số 14)
1) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14⋮14\)
vậy đpcm
3) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}.405⋮405\)
vậy đpcm
2: Sửa đề: 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4*55 chia hết cho 55
3: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5\)
\(=3^{22}\cdot405⋮405\)
1: \(=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}\cdot14⋮14\)
Ta xét các trường hợp sau:
+ TH1: abab=1⇔⇔a=b Thì a+2b+2a+2b+2=abab=1
+ TH2: abab<1 ⇔⇔a<b⇔⇔a+2<b+2
a+2b+2a+2b+2 Có phần bù tới 1 là: b−ab+2b−ab+2
abab có phần bù tới 1 là b−abb−ab
Mà b−ab+2b−ab+2<b−abb−ab nên a+2b+2a+2b+2>abab
+TH3: abab>1 ⇔⇔a>b ⇔⇔a+2>b+2
a+2b+2a+2b+2 có phần thừa so với 1 là a−bb+2a−bb+2
abab có phần thừa so với 1 là a−bba−bb
Mà a−bb+2a−bb+2<a−bba−bb nên a+2b+2a+2b+2<abab
Sửa lần cuối bởi BQT: 21 Tháng tư 2014
Ta có : 817 - 279 - 913 = 328 - 327 - 326
= 326 . ( 9 - 3 - 1 )
= 326 . 5
= 913 . 5
= ( 92 . 5 ) . 911
= 405 . 911
Do đó : 817 - 279 - 913 chia hết cho 405
a.
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{22}\times\left(3^6-3^5-3^4\right)=3^{22}\times405\)
\(\Rightarrow81^7-27^9-9^{13}⋮405\)
b.
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\times\left(2^4-2\right)=2^{17}\times14\)
\(\Rightarrow8^7-2^{18}⋮14\)
\(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}.3^4.5\)
\(=3^{22}.81.5\)
\(=405.3^{22}\)
\(\Rightarrow405.3^{26}⋮405\)
\(\Rightarrow81^7-27^9-9^{13}⋮405\)