cho M = \(\frac{x^2-5}{x^2-2}\) ( x ∈ Z )
tìm số nguyên x để M là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M= \(\frac{x^2-5}{x^2-2}\)=\(\frac{x^2-2-3}{x^2-2}\)= 1 - \(\frac{3}{x^2-2}\)
Để M là số nguyên thì ( x2 - 2) phải thuộc Ư(3)={1;3;-1;-3}
Với x2 -2=1 => x2 = 3 ( loại vì x là số nguyên) ; Với x2 -2=3 => x2=5( loại vì x là số nguyên)
Với x2-2=-1 =>x=1 hoặc x=-1(nhận); Với x2 -2=-3 =>x2 =-1( vô lí)
Vậy x=-1 và x=1
Để M là số nguyên thì x bình-5 chia hết cho x bình-2
Ta có:
x bình-5 = x bình-2-3
Vậy:
(x bình-2)-3 sẽ chia hết cho x bình-2
Mà x bình-2 chia hết cho x bình-2 (là sẽ bằng ko?)
Nên -3 sẽ chia hết cho x bình-2
Ư(-3)=-3 ;3;1 ; -1
Suy ra:
x*2 -2 = 1 suy ra x= tập hợp rỗng ( ko tính đc)
x*2-2= -1 suy ra x= 1
x*2-2=3 suy ra x=tập hợp rỗng(ko tính được)
x*2-2=-3 suy ra x=tập hợp rỗng(ko tính được)
Vậy x=1
ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M có giá trị nguyên
=> 3/x^2 - 2 thuộc Z
=> 3 chia hết cho x^2 - 2
=> x^2-2 thuộc Ư(3)={1;-1;3;-3}
nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)
x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)
x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)
x^2-2 = -3 => x^2 = -1 => không tìm được x
KL:...
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x2 - 2 | 1 | -1 | 3 | -3 |
x2 | 3 | 1 | 5 | -1 |
x | \(\pm\sqrt{3}\) | \(\pm1\) | \(\pm\sqrt{5}\) | Vô nghiệm |
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên
Làm câu a,b thôi nha !
a)Tính A khi x=1;x=2;x=5/2
x=1
Thay x vào biểu thức A, ta có:
\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)
x=2
Thay x vào biểu thức A ta có:
\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)
x=5/2
Thay x vào biểu thức A ta có:
\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)
b)Tìm x thuộc Z để A là số nguyên:
\(A=\frac{3x+2}{x-3}\)
Để A là số nguyên thì:
=>\(3x+2⋮x-3\)
\(\Rightarrow3x-9+11⋮x-3\)
\(\Rightarrow3\left(x-3\right)+11⋮x-3\)
\(\Rightarrow11⋮x-3\)
\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)
Xét trường hợp
\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)
Vậy A là số nguyên thì
\(x\inƯ\left(4;14\right)\)
Các bài còn lại làm tương tự !
b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)
\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)
Đối chiếu điều kiện ta có:
\(x\in\left\{1,16,25\right\}\)
Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\) Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)
\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)
Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)
Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)
Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)
Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)
Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều
P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ!
\(M=\frac{x^2-5}{x^2-2}\in Z\)
\(\Rightarrow x^2-5⋮x^2-2\)
\(\Rightarrow x^2-2-3⋮x^2-2\)
\(\Rightarrow3⋮x^2-2\)
\(\Rightarrow x^2-2\inƯ\left(3\right)\)
\(\Rightarrow x^2-2\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\)
\(x\in Z\)
=> x = 1