\(\frac{2}{7}\) + \(\frac{3}{8}\) ; \(\frac{7}{56}\) : \(\frac{20}{25}\) ; \(\frac{20}{35}\) x \(\frac{5}{4}\) ; \(\frac{8}{7}\) - \(\frac{5}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c)\) \(C=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}\)
\(C=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{193}\right)}\)
\(C=\frac{2}{3}\)
Bạn Cô nàng Thiên Bình làm đúng hết òi =.=
a=7.[1/8+1/27-1/49]
------------------------
11.[1/8+1/27-1/49]
=7/11
cau b,c tuong tu nha h mk
A= 7/8:(4/18-1/18)+7/8:(1/36-15/36)
=7/8:1/6+7/8:(-7/18)
=7/8:(1/6+-7/18)=7/8:(3/18+-7/18)=7/8:(-2/9)=-63/18=-7/2
a) 2/7+-3/8+11/7+1/3+1/7+5/-8
=(2/7+11/7+1/7)+(3/8+-5/8)+1/3
=2+2+1/3
=4+1/3
=13/3
b) -3/8+12/25+5/-8+2/-5+13/25
=(-3/8+-5/8)+(12/25+13/25)+-2/5
=-1+1+-2/5
=0+-2/5
=-2/5
c)7/8+1/8*3/8+1/8*5/8
=7/8+1/8*(3/8+5/8)
=7/8+1/8*1
=7/8+1/8
=1
a) 2/7+-3/8+11/7+1/3+1/7+5/-8
=(2/7+11/7+1/7)+(3/8+-5/8)+1/3
=2+2+1/3
=4+1/3
=13/3
b) -3/8+12/25+5/-8+2/-5+13/25
=(-3/8+-5/8)+(12/25+13/25)+-2/5
=-1+1+-2/5
=0+-2/5
=-2/5
c)7/8+1/8*3/8+1/8*5/8
=7/8+1/8*(3/8+5/8)
=7/8+1/8*1
=7/8+1/8
=1
a: \(=-9+\left\{-52:9\right\}=-9+\dfrac{-52}{9}=-\dfrac{133}{9}\)
b: \(=\dfrac{17}{7}+\left(\dfrac{-76}{63}\right):15\)
\(=\dfrac{17}{7}-\dfrac{76}{63}\cdot\dfrac{1}{15}=\dfrac{317}{135}\)
e: \(=\dfrac{-5}{13}\cdot\dfrac{7}{3}-\dfrac{2}{7}\cdot\dfrac{8}{13}+\dfrac{5}{13}\cdot\dfrac{1}{7}\)
\(=\dfrac{5}{13}\left(-\dfrac{7}{3}+\dfrac{1}{7}\right)-\dfrac{2}{7}\cdot\dfrac{8}{13}\)
\(=\dfrac{5}{13}\cdot\dfrac{-46}{21}-\dfrac{16}{91}=\dfrac{-278}{273}\)
\(S=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.\frac{9}{10}\)
\(S=\frac{1}{10}\)
học tốt
S=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{9}{10}\)
S=\(\frac{1.2.3....9}{2.3.4...10}=\frac{1}{10}\)
Vậy S=\(\frac{1}{10}\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)
a)\(\frac{2}{7}+\frac{3}{8}=\frac{16}{56}+\frac{21}{56}=\frac{37}{56}\)
b)\(\frac{7}{56}:\frac{20}{25}=\frac{6}{56}x\frac{25}{20}=\frac{150}{1120}=\frac{15}{112}\)
c)\(\frac{20}{35}x\frac{5}{4}=\frac{100}{140}=\frac{5}{7}\)
d)\(\frac{8}{7}-\frac{5}{6}=\frac{48}{56}-\frac{35}{56}=\frac{13}{56}\)