Phân tích thành nhân tử :
a, \(x^2-x-y^2-y\)
b, \(x^2-2xy+y^2-z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-x-y^2-y\)
\(=\left(x-y\right).1\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-x^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
Mik tl nhanh nhất đấy
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
a) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
a, x2-x-y2-y = ( x2-y2)-(x+y)=(x-y)(x+y)-(x+y)=(x+y)(x-y-1)
b. x2-2xy+y2-z2= (x-y)2 - z2= (x-y-z)(x-y+z)
Ta thấy:
a) \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y+z\right)\left(x-y-z\right)\)
a, Ta có x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ).( x + y ) - ( x + y )
= ( x+ y ).( x - y -1 )
b, Ta có x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z ).( x - y + z )
a) x2 - x - y2 - y = x2 - y2 - x - y
=(x - y) (x + y) - (x + y)
=(x + y) (x - y - 1)
b) x2 - 2xy + y2 - z2 = (x - y)2 - z2
=(x - y- z) (x - y + z)
a) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
x2−x−y2−y=(x2−y2)−(x+y)=(x−y)(x+y)−(x+y)=(x+y)(x−y−1)
\(=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a) x\(^2\)-x-y\(^2\)-y
=(x\(^2\)-y\(^2\)) - (x-y)
=xy(x-y) - (x-y)
=xy(x-y)
Bạn ơi, hình như sai ôy