Tìm n thuộc Z
\(\frac{3n+4}{2-n}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư ( 5 )
Ư ( 5 ) = { + 1 ; + 5 }
n - 2 | 1 | - 1 | 5 | - 5 |
n | 3 | 1 | 7 | - 3 |
\(\frac{n+3}{n-2}\) | 6/1 | 4/-1 | 10/5 | 0 |
Vậy để n + 3 / n - 2 là số âm thì n = 1
Câu b và c làm tương tự
3n-5 chia hết cho n+4
(3n+12)-17chia hết n+4
3(n+4)-17 chia hết n+4
17 chia hết n+4
Suy ra:
n+4 thuộc ước 17
Còn lại bạn tự làm nhé!!!!
Để 2n + 3 /3n-1 - n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 / 3n - 1 và n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 chia hết cho 3n - 1
suy ra : n - 2 chia hết cho 3n - 1
rồi bạn lập bảng giá trị các ước nha
CHÚC BẠN HỌC TỐT ^_^
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
Lời giải:
Với $n\in\mathbb{Z}$, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in \left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{0; \frac{2}{3}; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên:
$n\in\left\{0; 1; 4; -7\right\}$
\(\frac{3n+4}{2-n}=\frac{3n-6+10}{2-n}=\frac{-3\left(2-n\right)+10}{2-n}=-3+\frac{10}{2-n}\)
Để \(\frac{3n+4}{2-n}\) nguyên thì \(-3+\frac{10}{2-n}\) phải có GTN
\(\Rightarrow\frac{10}{2-n}\in Z\Rightarrow10⋮2-n\)
\(\Rightarrow2-n\inƯ\left(10\right)\Rightarrow2-n\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Rightarrow n\in\left\{1;3;0;4;-3;7;-8;12\right\}\)
Đặt A=\(\frac{3n+4}{2-n}=-3+\frac{10}{2-n}\)
Muốn A nguyên thì 2-n là Ư(10)=(-1;-2;-5;-10;1;2;5;10)