a)Tìm GTLN của A=3-|x+1212|
b) Cho a+b chia hết cho 6
c.m:a^3 + b^3 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\left|x+\frac{1}{2}\right|\ge0\Rightarrow-\left|x+\frac{1}{2}\right|\le0\Rightarrow3-\left|x+\frac{1}{2}\right|\le3\Rightarrow A\le3\)
b) b ở đâu thế bạn ?
a)Ta thấy:
\(-\left|x+\frac{1}{2}\right|\le0\)
\(\Rightarrow3-\left|x+\frac{1}{2}\right|\le3-0=3\)
\(\Rightarrow A\le3\)
Dấu "=" xảy ra khi \(-\left|x+\frac{1}{2}\right|=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy...
câu 1 nếu A chia hết cho 2 thì A là số chẵn
nếu A không chia hết cho 2 thì A là số lẻ
câu 2 :
a) có thể chia hết cho 6
số chia hết cho 9 thì chia hết cho 3
Bài 2 :
A = 12 + 14 + 16 + x \(⋮\) 2
mà 12 \(⋮\) 2
14 \(⋮\) 2
16 \(⋮\) 2
\(\Rightarrow\) ( 12 + 14 + 16 ) \(⋮\) 2
\(\Rightarrow\) x \(⋮\) 2
x = 2k ( k \(\in\) N )
A = 12 + 14 + 16 + x \(⋮̸\) 2
mà 12 \(⋮\) 2
14 \(⋮\) 2
16 \(⋮\) 2
\(\Rightarrow\) x \(⋮̸\) 2
x = 2k + r ( k \(\in\) N , r \(\in\) N* )
Bài 3 : Cách làm tương tự như bài 2
Hôm nay olm.vn sẽ hướng dẫn các em cách giải dạng bài như này.
Gặp những dạng toán nâng cao như này thì các em cần tìm \(x\) dưới dạng tổng quát em nhé. Học toán tập hợp là để giải toán dạng này đó em
Bài 3: a, 12 + 36 + 24 + \(x\) = 72 + \(x\)
72 + \(x\) ⋮ 6 ⇔ \(x\) ⋮ 6 ⇒ \(x\in\) A = { \(x\in\) Z/ \(x\) = 6k; k \(\in\) Z}
b, 72 + \(x\) không chia hết cho 6 ⇒ \(x\) không chia hết cho 6
⇒ \(x\) \(\in\) A = { \(x\) \(\in\) z/ \(x\) = 6k + q; k \(\in\) Z; q \(\in\) Z; q \(\ne\)0}
Bài 4: \(x\).9 ⋮3 vì 9 ⋮ 3 ⇒ \(x.9\) ⋮ 3 ∀ \(x\) \(\in\) Z Vậy \(x\) \(\in\) Z
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.
Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.
Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.
a) ta có|x+12| >= 0
=> 3-|x+12| \(\le\)3
Giá trị lớn nhất của A là 3 khi x=-12
a3+b3=(a+b)(a2+b2-ab) mà (a+b) chia hết 6
=> a3+b3 chia hét 6
= đpcm