CÁC BẠN GIẢI GIÚP MÌNH BÀI NÀY VỚI:
CHO PHÉP TÍNH: (2X+7):4=(3−5Y):7=(2X−5Y):9
TÌM X, Y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện <=>\(\begin{cases}\frac{2x+7}{4}=\frac{2x-5y}{9}\\\frac{2x+7}{4}=\frac{3-5y}{7}\end{cases}\)
<=>\(\begin{cases}14x+49=12-20y\\18x+63=8x-20y\end{cases}\) <=>\(\begin{cases}14x+20y=-37\\14x+20y=-63\end{cases}\) hệ phương trình vô nghiệm=> không có giá trị x,y thỏa mãn
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
mk giải bài 2 cho bạn thôi nhak vì bài 1 mk k bt cách bấm bình phương mũ 2
bình phương là nhấn x2
bạn giải nhanh lên giùm mình sắp đến giờ nộp bài rồi bạn
5x^2+5y^2+8xy-2x+2y+2=0
=>(4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
tổng 3 biểu thức không âm = 0 <=> chúng đều = 0
<=>2(x+y)=x-1=y+1=0
=>x=1;y=-1
Thay vào M ........
a) nếu \(5x-3\ge0\)hay \(x\ge\frac{3}{5}\) ta có \(\left|5x-3\right|=5x-3\)
nếu \(5x-3< 0\) hay \(x< \frac{3}{5}\) ta có \(\left|5x-3\right|=3-5x\)
với \(x\ge\frac{3}{5}\) ta có
\(\left|5x-3\right|=x+7\) \(< =>5x-3=x+7\)
\(< =>5x-x=7+3\)
\(< =>4x=10\)
\(< =>x=\frac{10}{4}=\frac{5}{2}\) (thoả mãn khoảng xét: \(\frac{5}{2}>\frac{3}{5}\))
với \(x< \frac{3}{5}\)ta được
\(\left|5x-3\right|=x+7\) \(< =>3-5x=x+7\)
\(< =>-5x-x=7-3\)
\(< =>-6x=4\)
\(< =>x=-\frac{4}{6}=-\frac{2}{3}\) (thoả mãn khoảng xét : \(-\frac{2}{3}< \frac{3}{5}\))
b) bạn lập bảng xét dấu rồi xét từng trường hợp là được
\(=\left(2x+\frac{3}{4}\right)\frac{7}{9}=\frac{15}{8}\)
\(=2x+\frac{3}{4}\)\(=\frac{15}{8}:\frac{7}{9}\)
=\(2x+\frac{3}{4}=\frac{135}{56}\)
=2x=\(\frac{135}{56}-\frac{3}{4}\)
=2x=\(\frac{93}{56}\)
x=\(\frac{93}{56}:2\)
x=\(\frac{93}{112}\)
k nha
\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}=\frac{\left(2x+7\right)+\left(3-5y\right)-\left(2x-5y\right)}{4+7-9}\)
\(=\frac{2x+7+3-5y-2x+5y}{2}=\frac{10}{2}=5\)
Suy ra:\(\frac{2x+7}{4}=5\Rightarrow2x+7=20\Rightarrow x=\frac{13}{2}\)
\(\frac{3-5y}{7}=5\Rightarrow3-5y=35\Rightarrow x=-\frac{32}{5}\)