Cho thỏa mãn: . Tính
Mình đang gấp lắm, help me pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a + b + c)3 = [(a + b) + c]3 = (a + b)3 + 3(a + b)2c + 3(a + b)c2 + c3
= a3 + b3 + 3ab(a + b) + 3(a + b)2c + 3(a + b)c2 + c3
= a3 + b3 + c3 + 3(a + b)[ab + (a + b)c + c2]
= a3 + b3 + c3 + 3(a + b)(ab + ac + bc + c2)
= a3 + b3 + c3 + 3(a + b)(b + c)(a + c)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(vì a + b + c = a3 + b3 + c3 = 1)
\(\Rightarrow\)a = -b hoặc b = -c hoặc c = -a
Khi a = -b thì c = 1
\(\Rightarrow\) A = 1
Tương tự khi b = -c thì a = 1
\(\Rightarrow\) A = 1
khi a = -c thì b = 1
\(\Rightarrow A=1\)
Vậy A = 1 trong cả 3 trường hợp trên
a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)
\(\Leftrightarrow x-2=7\)
hay x=9
Với x=0
\(\Rightarrow3.f\left(0\right)-f\left(1\right)=0+1=1\)
\(f\left(0\right)-f\left(1\right)=\frac{1}{3}\)(1)
Với x=1
\(\Rightarrow3.f\left(1\right)-f\left(0\right)=1+1=2\)
\(f\left(1\right)-f\left(0\right)=\frac{2}{3}\)(2)
Với x=-1
\(3.f\left(-1\right)-f\left(2\right)=1+1=2\)
\(\Rightarrow f\left(-1\right)-f\left(2\right)=\frac{2}{3}\)(3)
Kết hợp (1);(2);(3) tính nhé
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
bạn vòa đường link này là dc https://olm.vn/hoi-dap/detail/11276671901.html
ta có :
\(P\left(x^2\right)=x^2\left(x^2+1\right)P\left(x\right)\Rightarrow\frac{P\left(x^2\right)}{x^4\left(x^4-1\right)}=\frac{P\left(x\right)}{x^2\left(x^2-1\right)}\)
Đặt \(f\left(x\right)=\frac{P\left(x\right)}{x^2\left(x^2-1\right)}\Rightarrow f\left(x\right)=f\left(x^2\right)\forall x\Rightarrow f\left(x\right)=f\left(-x\right)=f\left(x^2\right)\)
\(\Rightarrow f\left(x\right)=f\left(\sqrt{x}\right)=...=f\left(\sqrt[2^n]{x}\right)=f\left(1\right)\) với mọi x>0
nên ta có f(x) là hàm hằng
hay \(\frac{P\left(x\right)}{x^2\left(x^2-1\right)}=c\text{ mà }P\left(2\right)=2\Rightarrow c=\frac{1}{6}\)
Vậy \(P\left(x\right)=\frac{1}{6}\left(x^2\left(x^2-1\right)\right)\)
Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)
Vậy ...
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x+y/9=y+z/12=z+x/13=2x+2y+2z/9+12+13=2(x+y+z)/34=2.51/34=102/34=3
suy ra: x+y=27; y+z=36: z+x=39
ta có: x+y+z=51
suy ra:
x=51-(y+z)=51-36=15
y=51-(z+x)=51-39=12
z=51-(x+y)51-27=24
Đỗ Văn Dương Nhơng x<y mà bạn , mik cũng tham khảo mấy bài trc ròi, mik ko hiểu tại sao lại nhơ thế ,x<y mà
Bài 1
ta có a+3+b-3 =a +b chia hết cho 4
nên (b-a )(a+b) cũng chia hết cho 4
bài 2.
ta có: \(M=6x^2-5x-6-12xy+6y^2+6y-3x+2y+2027\)
\(=6\left(x-y\right)^2-8\left(x-y\right)+2021=24-16+2021=2029\)
abc=1 khi a=1,b=1,c=1
=>(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3
=(1+1+1)^3-(1+1-1)^3-(1+1-1)^3-(1+1-1)^3
=3^3-1^3-1^3-1^3
=27-1-1-1
=24
cho mình nha