1, Cho 2x;3y tỉ lệ nghịch với 3,4;x và z tỉ lệ thuận với 4,5; x-2y+3z=1. Tính x-y-z
2. Tìm x: \(\left(2x-3\right)^2\)-\(2\left(3x+1\right)^2\)=\(2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2x-2\)\(⋮\)\(x-2\)
\(\Leftrightarrow\)\(2\left(x-2\right)+2\)\(⋮\)\(x-2\)
Ta thấy \(2\left(x-2\right)\)\(⋮\)\(x-2\)
nên \(2\)\(⋮\)\(x-2\)
hay \(x-2\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng sau:
\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\) \(1\) \(3\) \(4\)
Vậy \(x=\left\{0;1;3;4\right\}\)
Ta có: \(\left(2x-1\right)^3-\left(2x+1\right)\left(4x^2-2x+1\right)=-8\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3-1=-8\)
\(\Leftrightarrow-12x^2+6x+6=0\)
\(\Leftrightarrow2x^2-x-1=0\)
a=2; b=-1; c=-1
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-1}{2}\)
Q=x^6+x^5+x^5+x^4+x^4+x^3+x^3+x^2+x^2+x+x+1
=x^4(x^2+x)+x^3(x^2+x)+x^2(x^2+x)+x(x^2+x)+1+x+1
=x^4+x^3+x^2+x+x+2
=x^4+x^3+x^2+2x+2
=x^2(x^2+x)+x^2+x+x+2
=x^2+1+x+2
=x^2+x+3
=1+3
=4
a. \(y=\frac{2}{2x+3}\in Z\)
\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{-2;-1\right\}\)
b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)
Vì y thuộc Z nên 2 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{1;2\right\}\)
c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)
Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z
=> 2x + 4 / 2x - 3 thuộc Z
=> 2x - 3 + 7 / 2x - 3 thuộc Z
=> 7 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)
\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )
d,e tương tự
a: \(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
a: \(\left(-120\right):15+12\left(2x-1\right)=52\)
=>\(12\left(2x-1\right)-8=52\)
=>\(12\left(2x-1\right)=60\)
=>\(2x-1=\dfrac{60}{12}=5\)
=>2x=5+1=6
=>\(x=\dfrac{6}{2}=3\)
c: \(x+4⋮x+1\)
=>\(x+1+3⋮x+1\)
=>\(3⋮x+1\)
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
d: \(2x+7⋮x+2\)
=>\(2x+4+3⋮x+2\)
=>\(3⋮x+2\)
=>\(x+2\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-1;-3;1;-5\right\}\)
e: \(3x⋮x-1\)
=>\(3x-3+3⋮x-1\)
=>\(3⋮x-1\)
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
1
2x . 3=3y .4
=> x=2y=>\(\frac{x}{2}=y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\frac{x}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{5}=\frac{x-2y+3z}{4-4+15}=\frac{1}{15}=\)
x=1/15x4=4/15
y=1/15x2=2/15
z=1/15x6=1/10
\(\Rightarrow x-y-z=\frac{4}{15}-\frac{2}{15}-\frac{1}{10}=\frac{1}{30}\)
\(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
4\(x^2\)-12x+9-2(9\(x^2\)+6x+1)=2\(x^2\)-4x+\(x^2\)+2x-x-2
4\(x^2\)-12x+9-18\(x^2\)-12x-2=2\(x^2\)-4x+\(x^2\)+2x-x-2
(4\(x^2\)-18\(x^2\)-2\(x^2\)-\(x^2\)) +(-12x-12x+4x-2x+x)+(9-2+2)=0
-17\(x^2\)-21x+9=0